Skip to main content
Log in

Formation of the χ-Phase Precipitate in Co-28Cr-6Mo Alloys with Additional Si and C

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The precipitates of biomedical Co-28Cr-6Mo-(0.5 to 2)Si-(0.05 to 0.35)C alloys (mass pct) have been investigated before and after heat treatment, focusing on the formation of the χ-phase precipitate. The precipitates were precisely and directly analyzed after using electrolytic extraction to separate the precipitates from the alloys. Heat treatment was performed at 1523 K (1250 °C) for a holding time of 0.6 ks. The χ-phase precipitate was detected with Si content of 1.3 to 2 mass pct and C content of 0.05 to 0.15 mass pct in both the as-cast and heat-treated alloys. The higher Si content and the mid-level C content of about 0.15 mass pct favored the formation of the χ-phase precipitate. Moreover, the χ-phase precipitate was not observed in the compositional range of the ASTM F 75 standard: Si content ≤1.0 mass pct and C content ≤0.35 mass pct. In the as-cast Co-28Cr-6Mo-1.3Si-0.15C alloy, which is outside of the ASTM F 75 standard, the content of the χ-phase precipitate was around 6 pct in area percent; the decrease in the ductility was detected in the tensile test of this alloy. The amount of precipitates decreased due to heat treatment at 1523 K (1250 °C), where the dissolution of precipitates occurred. After the heat treatment, a single χ-phase precipitate region was detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. T. Narushima, K. Ueda, Alfirano, Co-Cr alloys as effective metallic biomaterials. in: M. Niinomi, T. Narushima, M. Nakai (Eds.), Advances in Metallic Biomaterials: Tissues, Materials and Biological Reactions, Springer, Berlin (2015).

    Google Scholar 

  2. Y.S. Jabbari: J. Adv. Prosthodont., 2014, vol. 6, pp. 138–145.

    Article  Google Scholar 

  3. V.A. Mayer, ed.: 2013 Annual Book of ASTM Standards, Section Thirteen, Medical Devices and Services, vol. 13.01, ASTM International, PA, 2013, pp. 88–91.

  4. A. Takaichi, A. Suyalatu, T. Nakamoto, N. Joko, N. Nomura, Y. Tsutsumi, S. Migita, H. Doi, S. Kurosu, A. Chiba, N. Wakabayashi, Y. Igarashi and T. Hanawa: J. Mech. Behav. Biomed. Mater., 2013, vol. 21, pp. 67–76.

    Article  Google Scholar 

  5. G. Barucca, E. Santecchia, G. Majni, E. Girardin, E. Bassoli, L. Denti, A. Gatto, L. Iulianod, T. Moskalewicz and P. Mengucci: Mater. Sci. Eng. C, 2015, vol. 48, pp. 263–269.

    Article  Google Scholar 

  6. S. M. Gaytan, L. E. Murr, E. Martinez, J. L. Martinez, B.I. Machado, D. A. Ramirez, F. Medina, S. Collins and R.B. Wicker: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 3216–3227.

    Article  Google Scholar 

  7. S.M. Gaytan, L.E. Murr, D.A. Ramirez, B.I. Machado, E. Martinez, D.H. Hernandez, J.L. Martinez, F. Medina and R.B. Wicker: Mate. Sci. Appl., 2011, vol. 2, pp. 355–363.

    Google Scholar 

  8. V.A. Mayer, ed.: 2013 Annual Book of ASTM Standards, Section Thirteen, Medical Devices and Services, vol. 13.01, ASTM International, PA, 2013, pp. 367–370

  9. V.A. Mayer, ed.: 2013 Annual Book of ASTM Standards, Section Thirteen, Medical Devices and Services, vol. 13.01, V.A. Mayer, ed., ASTM International, PA, 2013, pp. 568–571.

  10. E. Bettini, T. Eriksson, M. Boström, C. Leygraf and J. Pan: Electrochim. Acta, 2011, vol. 56, pp. 9413–9419.

    Article  Google Scholar 

  11. K. Yamanaka, M. Mori and A. Chiba: Acta Biomater., 2013, vol. 9, pp. 6259–6267.

    Article  Google Scholar 

  12. S. Kurosu, H. Matsumoto and A. Chiba: Mater. Lett., 2010, vol. 64, pp. 49–52.

    Article  Google Scholar 

  13. A. Chiba, K. Kumagai, N. Nomura and S. Miyakawa: Acta Mater., 2007, vol. 55, pp. 1309–1318.

    Article  Google Scholar 

  14. Y. Chen, Y. Li, S. Kurosu, K. Yamanaka, N. Tang, Y. Koizumi and A. Chiba: Wear, 2014, vol. 310, pp. 51–62.

    Article  Google Scholar 

  15. S. Mineta, S. Namba, T. Yoneda, K. Ueda and T. Narushima: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 2129–2138.

    Article  Google Scholar 

  16. Alfirano, S. Mineta, S. Namba, T. Yoneda, K. Ueda and T. Narushima: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 1941–1949.

    Article  Google Scholar 

  17. T. Narushima, A. Alfirano, S. Mineta, S. Namba, T. Yoneda and K. Ueda: Adv. Mater. Res., 2011, vol. 277, pp. 51–58.

    Article  Google Scholar 

  18. Alfirano, S. Mineta, S. Namba, T. Yoneda, K. Ueda and T. Narushima: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 2125–2132.

    Article  Google Scholar 

  19. S. Mineta, A. Alfirano, S. Namba, T. Yoneda, K. Ueda and T. Narushima: Metall. Mater. Trans. A, 2012, vol. 43, pp. 3351–3358.

    Article  Google Scholar 

  20. S. Mineta, A. Alfirano, S. Namba, T. Yoneda, K. Ueda and T. Narushima: Metall. Mater. Trans. A (2013), vol. 44, pp. 494–503.

    Article  Google Scholar 

  21. T. Narushima, S. Mineta, Y. Kurihara and K. Ueda: JOM, 2013, vol. 65, pp. 489–504.

    Article  Google Scholar 

  22. J.S. Kasper: Acta. Metall., 1954, vol. 2, pp. 456–461.

    Article  Google Scholar 

  23. J-M. Joubert and M. Phejar: Prog. Mater. Sci., 2009, vol. 54, pp. 945–980.

    Article  Google Scholar 

  24. K.W. Andrews: Nature, 1949, vol.164, p. 1015.

    Article  Google Scholar 

  25. H.J. Goldschmidt: Metallurgia, 1957, vol. 56, pp. 17–26.

    Google Scholar 

  26. B. Weiss and R. Stickler: Metall. Trans., 1972, vol. 3, pp. 851–866.

    Article  Google Scholar 

  27. I.C.I. Okafor and O.N. Carlson: Metall. Trans. A, 1978, vol. 9A, pp. 1651–1657.

    Article  Google Scholar 

  28. B.V. Khaenko, S.Y. Golub, T.A. Velikanova and V.V. Kuprin: Phys. Met. Metallogr., 1993, vol. 75, pp. 86–91.

    Google Scholar 

  29. M. Ceylan, V. Kuzucu, M. Aksoy, I. Aksoy, M. Kaplan and M.M. Yildirim: J. Mater. Processing Tech., 1997, vol. 69, pp. 238–246.

    Article  Google Scholar 

  30. T.H. Lee, S.J. Kim and Y.C. Jung: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 1713–1723.

    Article  Google Scholar 

  31. A. Redjaïmia, A. Proult, P. Donnadieu and J.P. Morniroli: J. Mater. Sci., 2004, vol. 39, pp. 2371–2386.

    Article  Google Scholar 

  32. Y. Yamaguchi, S. Miyazaki, S. Kumai and A. Sato: Philo. Mag., 2006, vol. 86, 4319–4340.

    Article  Google Scholar 

  33. J. Michalska and M. Sozańska: Mater. Charac., 2006, vol.56, pp. 355–362.

    Article  Google Scholar 

  34. W. Xu, D. San Martin, P.E.J. Rivera Díaz del Castillo and S. van der Zwaag: Mater. Sci. Eng. A, 2007, vol.467, pp. 24–32.

    Article  Google Scholar 

  35. N. Stanford, D.P. Dunne and B.J. Monaghan: J. Alloys Compd., 2007, vol. 430, pp. 107–115.

    Article  Google Scholar 

  36. C.H. Yang, H.C. Lin, K.M. Lin and W.H. Ho: Mater. Trans., 2008, vol. 49, 1853–1857.

    Article  Google Scholar 

  37. D.M. Escriba, E. Materna-Morris, R.L. Plaut and A.F. Padilha: Mater. Charact., 2009, vol. 60, pp. 1214–1219.

    Article  Google Scholar 

  38. I. Calliari, G. Straffelini and E. Ramous: Mater. Sci. Tech., 2010, vol. 26, pp. 81–86.

    Article  Google Scholar 

  39. E. J. Chun, H. Baba, K. Nishimoto and K. Saida: Mater. Charact., 2013, vol. 86, pp. 152–166.

    Article  Google Scholar 

  40. P. Olier, F. Barcelo, J.L. Bechade, J.C. Brachet, E. Lefevre and G. Guenin: J. Phys. IV France, 1997, vol. 7, pp. 143–148.

    Article  Google Scholar 

  41. L.E. Ramírez, M. Castro, M. Méndez, J. Lacaze, M. Herrera and G. Lesoult: Scripta Mater., 2002, vol. 47, pp. 811–816.

    Article  Google Scholar 

  42. P. Marshall: Austenitic stainless steels, microstructure and mechanical properties, Elsevier, London, UK, 1984, p. 56.

    Google Scholar 

  43. K.B. Zhang, Z.Y. Fu, J.Y. Zhang, W.M. Wang, H. Wang, Y.C. Wang, Q.J. Zhang and J. Shi: Mater. Sci. Eng. A, 2009, vol. 508, pp. 214–219.

    Article  Google Scholar 

Download references

Acknowledgments

This study was partially supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan and MEXT special expenditures: Innovative Research for Biosis-Abiosis Intelligent Interface.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takayuki Narushima.

Additional information

Manuscript submitted January 4, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sugawara, K., Alfirano, Mineta, S. et al. Formation of the χ-Phase Precipitate in Co-28Cr-6Mo Alloys with Additional Si and C. Metall Mater Trans A 46, 4342–4350 (2015). https://doi.org/10.1007/s11661-015-3008-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-3008-z

Keywords

Navigation