Skip to main content
Log in

High-Speed Synchrotron X-ray Imaging Studies of the Ultrasound Shockwave and Enhanced Flow during Metal Solidification Processes

  • Symposium: Advances in Solidification of Metallic Alloys under External Fields
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The highly dynamic behavior of ultrasonic bubble implosion in liquid metal, the multiphase liquid metal flow containing bubbles and particles, and the interaction between ultrasonic waves and semisolid phases during solidification of metal were studied in situ using the complementary ultrafast and high-speed synchrotron X-ray imaging facilities housed, respectively, at the Advanced Photon Source, Argonne National Laboratory, US, and Diamond Light Source, UK. Real-time ultrafast X-ray imaging of 135,780 frames per second revealed that ultrasonic bubble implosion in a liquid Bi-8 wt pctZn alloy can occur in a single wave period (30 kHz), and the effective region affected by the shockwave at implosion was 3.5 times the original bubble diameter. Furthermore, ultrasound bubbles in liquid metal move faster than the primary particles, and the velocity of bubbles is 70 ~ 100 pct higher than that of the primary particles present in the same locations close to the sonotrode. Ultrasound waves can very effectively create a strong swirling flow in a semisolid melt in less than one second. The energetic flow can detach solid particles from the liquid–solid interface and redistribute them back into the bulk liquid very effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R. L. Roderick and R. Truell: J. Appl. Phys., 1952, vol. 23, pp. 267-79.

    Article  Google Scholar 

  2. K. S. Suslick, D. J. Casadonte, M. L. Green and M. E. Thompson: Ultrasonics, 1987, vol. 25, pp. 56-59.

    Article  Google Scholar 

  3. K. S. Suslick, S. Choe, A. A. Cichowlas and M. W. Grinstaff: Nature, 1991, vol. 353, pp. 414-16.

    Article  Google Scholar 

  4. J.D. Achenbach and O.K. Parikh: Rev. Prog. Q., Springer US, 1991, pp. 1837–44.

  5. H. R. Mayer, H. Lipowsky, M. Papakyriacou, R. Rösch, A. Stich and S. Stanzl-Tschegg: Fatigue Fract. Eng. M., 1999, vol. 22, pp. 591-99.

    Article  Google Scholar 

  6. D. G. Shchukin, E. Skorb, V. Belova and H. Möhwald: Adv. Mater., 2011, vol. 23, pp. 1922-34.

    Article  Google Scholar 

  7. J.Campbell: Int.Mater. Rev., 1981, vol. 26, pp. 77-108.

    Article  Google Scholar 

  8. G. I. Eskin and D. G. Eskin: Ultrasonic Treatment of Light Alloy Melts, 2nd ed., CRC Press, Boca Raton, Florida, US, 2015.

    Google Scholar 

  9. W. Lauterborn and T. Kurz: Rep. Prog. Phys., 2010, vol. 73, pp. 1-88.

    Article  Google Scholar 

  10. K. S. Suslick and D. J. Flannigan: Annu. Rev. Phys. Chem., 2008, vol. 59, pp. 659-83.

    Article  Google Scholar 

  11. M. L. Calvisi, O. Lindau, J. R. Blake and A. J. Szeri: Phys. Fluids, 2007, vol. 19, pp. 101-15.

    Article  Google Scholar 

  12. D. J. Flannigan and K. S. Suslick: Nature, 2005, vol. 434, pp. 52-55.

    Article  Google Scholar 

  13. K. S. Suslick, D. A. Hammerton and R. E. Cline: J. Am..Chem.Soc., 1986, vol. 108, pp. 5641-42.

    Article  Google Scholar 

  14. C. D. Ohl and R. Ikink: Phys. Rev. Lett., 2003, vol. 90, pp. 21-24.

    Article  Google Scholar 

  15. W. Lauterborn and C. D. Ohl: Ultrason. Sonochem., 1997, vol. 4, pp. 65-75.

    Article  Google Scholar 

  16. T. L. Lee, J. C. Khong, K. Fezzaa and J. Mi: Mater. Sci. Forum, 2013, vol. 765, pp. 190-94.

    Article  Google Scholar 

  17. H. Huang, D. Shu, Y. Fu, J. Wang and B. Sun: Ultrason. Sonochem., 2014, vol. 21, pp. 1275-78.

    Article  Google Scholar 

  18. J. Mi, D. Tan, and T.L. Lee: Metall. and Mater. Trans. B, 2014 (Open Access published online 11 Dec 2014), DOI: 10.1007/s11663-014-0256-z.

  19. X. Jian, H. Xu, T. T. Meek and Q. Han: Mater. Lett., 2005, vol. 59, pp. 190-93.

    Article  Google Scholar 

  20. M. Qian and A. Ramirez: J. Appl.Phys., 2009, vol. 105, pp. 81-86.

    Google Scholar 

  21. M. K. Aghayani and B. Niroumand: J. Alloys Compd., 2011, vol. 509, pp. 114-22.

    Article  Google Scholar 

  22. H. Chen, Z. Li, Z. Wu and Z. Zhang: J. Alloys Compd., 2005, vol. 394, pp. 282-85.

    Article  Google Scholar 

  23. O. V. Abramov: Ultrasonics, 1987, vol. 25, pp. 73-82.

    Article  Google Scholar 

  24. T. V. Atamanenko, D. G. Eskin, L. Zhang and L. Katgerman: Metall. Mater. Trans. A, 2010, vol. 41, pp. 2056-66.

    Article  Google Scholar 

  25. R. Hickling: Nature, 1965, vol. 206, pp. 915-17.

    Article  Google Scholar 

  26. J. D. Hunt and K. A. Jackson: J. Appl. Phys., 1966, vol. 37, pp. 254-57.

    Article  Google Scholar 

  27. B. Chalmers: Liquids: Structures, Properties, Solidlnteractions, 1st ed., Elsevier, Amsterdam, the Netherlands, 1965.

    Google Scholar 

  28. G.M. Swallowe, J.E. Field, C.S. Rees, and A. Duckworth: Acta Mater., 1989, vol. 37, pp. 961–67.

    Article  Google Scholar 

  29. R. Chow, R. Blindt, R. Chivers and M. Povey: Ultrasonics, 2005, vol. 43, pp. 227-30.

    Article  Google Scholar 

  30. D. Shu, B. Sun, J. Mi and P.S. Grant: Metall. Mater. Trans. A, 2012, vol. 43, pp. 3755-66.

    Article  Google Scholar 

  31. Y. Wang, X. Liu, K.S. Im, W. K. Lee, J. Wang, K. Fezzaa, D. S. Hung and J. R. Winkelman: Nat. Phys., 2008, vol. 4, pp. 305-09.

    Article  Google Scholar 

  32. K. Fezzaa, Y. Wang: Phys. Rev. Lett., 2008, vol. 100, pp. 13-16.

    Article  Google Scholar 

  33. R. Boll, D. Anielski, C. Bostedt, J. Bozek, L. Christensen, R. Coffee, S. De, P. Decleva, S. Epp, B. Erk, L. Foucar, F. Krasniqi, J. Küpper, A. Rouzée, B. Rudek, A. Rudenko, S. Schorb, H. Stapelfeldt, M. Stener, S. Stern, S. Techert, S. Trippel, M. Vrakking, J. Ullrich, and D. Rolles: Phys. Rev. A, 2013, vol. 88, no. 6, pp. 1402-1406.

    Article  Google Scholar 

  34. D. Milathianaki, S. Boutet, G. J. Williams, A. Higginbotham, D. Ratner, A. E. Gleason, M. Messerschmidt, M. M. Seibert, D. C. Swift, P. Hering, J. Robinson, W. E. White, and J. S. Wark: Science, 2013, vol. 342, pp. 220-23.

    Article  Google Scholar 

  35. T. B. Massalski, and H. Okamoto: Binary Alloy Phase Diagrams, 2nd ed., Materials Park, ASM International, 1990.

    Google Scholar 

  36. J. Vizdal, M. H. Braga, A. Kroupa, K. W. Richter, D. Soares, L. F. Malheiros, and J. Ferreira: Calphad, 2007,vol. 31, pp. 438-48.

    Article  Google Scholar 

  37. M. Drakopoulos: http://www.diamond.ac.uk/Beamlines/Engineering-and-Environment/I12/applications.html.

  38. R.C. Gonzalez, R.E. Woods and S.L. Eddins: Digital Image Processing Using MATLAB, 2nd ed., Gatesmark, LLC, 2009.

    Google Scholar 

  39. Y. A. Hassan and R. E. Canaan: Exp. Fluids, 1991, vol. 12, pp. 49-60.

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support from the U.K. Engineering and Physical Sciences Research Council (Grant No. EP/L019965/1), The Royal Society Industry Fellowship (for J Mi), and the Hull University & Chinese Scholarship Council (Hull-CSC) PhD Studentship (for D. Tan). The awards of the synchrotron X-ray beam time (EE8542-1) by the Diamond Light Source, UK, and the synchrotron X-ray beam time (GUP 23649 and GUP 26170) by the Advanced Photon Source, Argonne National Laboratory, US are also gratefully acknowledged. Use of the Advanced Photon Source, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science by Argonne National Laboratory, was supported by the U.S. DOE under Contract No. DE-AC02-06CH11357.

Special thanks also go to Julia Malle of Glass Workshop in the Department of Chemistry, University of Hull, who has assisted on making the special quartz tube containers used in the in situ synchrotron X-ray imaging studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiawei Mi.

Additional information

Manuscript submitted January 15, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, D., Lee, T.L., Khong, J.C. et al. High-Speed Synchrotron X-ray Imaging Studies of the Ultrasound Shockwave and Enhanced Flow during Metal Solidification Processes. Metall Mater Trans A 46, 2851–2861 (2015). https://doi.org/10.1007/s11661-015-2872-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-2872-x

Keywords

Navigation