Skip to main content
Log in

Effects of Erosion Angle on Erosion Properties of Fe-B Alloy in Flowing Liquid Zinc

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effect of erosion angle on erosion behavior of the as-cast Fe-B alloy in flowing liquid zinc was investigated. The results show that the erosion rate of Fe-B alloy decreases linearly with increasing erosion angle. The erosion resistance of Fe-B alloy is better than that of 316L stainless steel, which is attributed to the favorable barrier effect of net-like Fe2B that resists erosion by flowing liquid zinc. Meanwhile, the ductile matrix can provide support in preventing borides from spalling and borides cause barrier effect on flowing liquid zinc during liquid zinc erosion, which shows a synergistic erosion-corrosion behavior between the matrix and borides. Moreover, an increase in erosion angle can cause a decrease in the removal effect of the flowing liquid zinc scouring component on the erosion compounds. Therefore, the quantity of erosion compounds increases at the erosion interface, weakening the mass transfer process and decreasing the erosion rate of the Fe-B alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. Hémery, T. Auger, J.L. Courouau, and F. Balbaud-Célérier: Corros. Sci., 2014, vol. 83, pp. 1–5.

    Article  Google Scholar 

  2. C. Ladd, J.H. So, J. Muth, and M.D. Dickey: Adv. Mater., 2013, vol. 25, pp. 5081–85.

    Article  Google Scholar 

  3. D.J. Bradwell, H. Kim, A.H.C. Sirk, and D.R. Sadoway: J. Am. Chem. Soc., 2012, vol. 134, pp. 1895–97.

    Article  Google Scholar 

  4. H. Y. Li, Y. Yang, and J. Liu: Appl. Phys. Lett., 2012, vol. 101, pp. 073511–15.

    Article  Google Scholar 

  5. C.S. Han: Atlas of Microstructure on Metals Corrosion, 1st ed., National Defense Industry Press, Beijing, 2008, p. 73.

    Google Scholar 

  6. M. Kondo, M. Takahashi, T. Tanaka, V. Tsisar, and T. Murogac: Fusion Eng. Des., 2012, vol. 87, pp. 1777–87.

    Article  Google Scholar 

  7. J.S. Zhang and N. Li: Corros. Sci., 2007, vol. 49, pp. 4154–84.

    Article  Google Scholar 

  8. P. Tunthawiroon, Y. P. Li, N. Tang, and A. Chiba: Corros. Sci., 2013, vol. 77, pp. 97–102.

    Article  Google Scholar 

  9. J. Zhang, P. Hosemann, and S. Maloy: J. Nucl. Mater., 2010, vol. 404, pp. 82–96.

    Article  Google Scholar 

  10. O. Hamdane, J. Bouquerel, I. Proriol-Serre, and J.B. Vogt: J. Mater. Process. Technol., 2011, vol. 211, pp. 2085–90.

    Article  Google Scholar 

  11. D.R. Yan, Y. Yang, Y.C. Dong, X.G. Chen, L. Wang, J.X. Zhang, and J. He: Intermetallics, 2012, vol. 22, pp. 160–65.

    Article  Google Scholar 

  12. R.H. Biddulph: Thin Solid Films, 1977, vol. 45, pp. 341–47.

    Article  Google Scholar 

  13. X.M. Cao, R.N. Ma, J.J. Wu, M. Wen, Y.Z. Fan, and A. Du: Corros. Eng. Sci. Technol., 2009, vol. 44, pp. 441–44.

    Article  Google Scholar 

  14. D.C. Lou, O.M. Akselsen, M.I. Onsøien, J.K. Solberg, and J. Berget: Surf. Coat. Technol., 2006, vol. 200, pp. 5282–88.

    Article  Google Scholar 

  15. D.N. Tsipas, G.K. Triantafyllidis, J.K. Kiplagat, and P. Psillaki: Mater. Lett., 1998, vol. 37, pp. 128–31.

    Article  Google Scholar 

  16. H.G. Fu, X.D. Song, Y.P. Lei, and J.D. Xing: Mater. Corros., 2008, vol. 59, pp. 948–53.

    Article  Google Scholar 

  17. P. Liberski, P. Podolski, A. Gierek, and B. Formanek: Mater. Sci. Forum., 1997, vol. 251, pp. 693–700.

    Article  Google Scholar 

  18. S. Q. Ma, J.D. Xing, H.G. Fu, Y.L. He, Y. Bai, Y.F. Li, and Y.P. Bai: Corros. Sci., 2014, vol. 78, pp. 71–80.

    Article  Google Scholar 

  19. M.A. Islam and Z.N. Farhat: Wear, 2014, vol. 311, pp. 180–90.

    Article  Google Scholar 

  20. Q.Y. Wang, S.L. Bai, and Z.D. Liu: Tribol. Lett., 2014, vol. 53, pp. 271–79.

    Article  Google Scholar 

  21. D. L´opez, J.P. Congote, J.R. Cano, A. Toro, and A.P. Tschiptschin: Wear, 2005, vol. 25, pp. 118–24.

  22. Y.F. Wang and Z.G. Yang: Wear, 2008, vol. 265, pp. 871–78.

    Article  Google Scholar 

  23. I.M. Hutchings: J. Phys. D Appl. Phys., 1992, vol. 25, pp. A212–21.

    Article  Google Scholar 

  24. Z.G. Liu, S. Wan, V.B. Nguyen, and Y.W. Zhang: Wear, 2014, vol. 313, pp. 135–42.

    Article  Google Scholar 

  25. S. Hattori and M. Kakuichi: Wear, 2013, vol. 298–299, pp. 1–7.

    Article  Google Scholar 

  26. L.Y. Xu and Y.F. Cheng: Corros. Sci., 2008, vol. 50, pp. 2094–2100.

    Article  Google Scholar 

  27. S.Q. Ma, J.D. Xing, H.G. Fu, D.W. Yi, Y.F. Li, J.J. Zhang, B.J. Zhu, and Y. Gao: Mater. Chem. Phys., 2012, vol. 132, pp. 977–86.

    Article  Google Scholar 

  28. S.Q. Ma, J.D. Xing, H.G. Fu, D.W. Yi, X.H. Zhi, and Y.F. Li: Surf. Coat. Technol., 2010, vol. 204, pp. 2208–14.

    Article  Google Scholar 

  29. X.B. Liu, E. Barbero, J. Xu, M. Burris, K.M. Chang, and V. Sikka: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 2049–58.

    Article  Google Scholar 

  30. S.Q. Ma, J.D. Xing, H.G. Fu, D.W. Yi, J.J. Zhang, Y.F. Li, Z.Y. Zhang, B.J. Zhu, and S.C. Ma: Corros. Sci., 2011, vol. 53, pp. 2826–34.

    Article  Google Scholar 

  31. A.R. Marder: Prog. Mater. Sci., 2000, vol. 45, pp. 191–271.

    Article  Google Scholar 

  32. J.H. Honga, S.J. Ohb, and S.J. Kwonc: Intermetallics, 2003, vol. 11, pp. 207–13.

    Article  Google Scholar 

  33. A.R.B. Verma and W.J. Ooij: Surf. Coat. Technol., 1997, vol. 89, pp. 132–42.

    Article  Google Scholar 

  34. S. Yin, X.F. Wang, W.Y. Li, and B.P. Xu: J. Therm. Spray Technol., 2010, vol. 19, pp. 1155–62.

    Article  Google Scholar 

  35. H.Y. Teng, C.H. Hsu, S.C. Chiu, and D.C. Wen: Mater. Trans., 2003, vol. 44, pp. 1480–87.

    Article  Google Scholar 

  36. R.C. Zeng, L. Sun, Y.F. Zheng, H.Z. Cui, and E.H. Han: Corros. Sci., 2014, vol. 79, pp. 69–82.

    Article  Google Scholar 

  37. K. Ueno, S.I. Pyun, and M. Seo: J. Electrochem. Soc., 2000, vol. 147, pp. 4519–23.

    Article  Google Scholar 

  38. H.L. Bernstein: Metall. Trans. A, 1987, vol. 18A, pp. 975–86.

    Article  Google Scholar 

  39. A. Kiani, D.G. Hasko, W.I. Milne, and A.J. Flewitt: Appl. Phys. Lett., 2013, vol. 102, no. 152102, pp. 1–5.

    Google Scholar 

  40. S.H. Shin, J.J. Kim, J.A. Jung, K.J. Choi, I.C. Bang, and J.H. Kim: J. Nucl. Mater., 2012, vol. 422, pp. 92–102.

    Article  Google Scholar 

  41. F. Barbier and J. Blanc: J. Mater. Res., 1999, vol. 14, pp. 737–44.

    Article  Google Scholar 

  42. A. Chakraborty and R.K. Ray: Surf. Coat. Technol., 2009, vol. 203, pp. 1756–64.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the financial support for this work from the Natural Science Foundation of China under Grants No. 51301128, 51271142 & 51274016, the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grants No. 20110201130008 & No. 20120201120005, the National Science Foundation for Post-doctoral Scientists of China under Grants No. 2012M521767 & 2013T60875, the Natural Science Foundation of Shaanxi Province under Grant No. 2014JQ7281, the Shaanxi provincial post-doctoral research project and Fundamental Research Funds for the Central Universities under Grant No. XJJ2013038 & XJJ2014167.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengqiang Ma.

Additional information

Manuscript submitted September 5, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, G., Xing, J., Ma, S. et al. Effects of Erosion Angle on Erosion Properties of Fe-B Alloy in Flowing Liquid Zinc. Metall Mater Trans A 46, 1900–1907 (2015). https://doi.org/10.1007/s11661-015-2820-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-2820-9

Keywords

Navigation