Skip to main content
Log in

Weibull Analysis of Mechanical Data for Castings II: Weibull Mixtures and Their Interpretation

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The interpretation of Weibull probability plots of mechanical testing data from castings was discussed in Part 1 (M. Tiryakioğlu, J. Campbell: Metall. Mater. Trans. A, 41 (2010) 3121-3129). In Part II, details about the mathematical models of Weibull mixtures are introduced. The links between the occurrence of Weibull mixtures and casting process parameters are discussed. Worked examples are introduced in five case studies in which six datasets from the literature were reanalyzed. Results show that tensile and fatigue life data should be interpreted differently. In tensile data, Weibull mixtures are due to two distinct defect distributions, namely “old” and “young” bifilms, which are a result of prior processing and mold filling, respectively. “Old” bifilms are the predominant defect and result in the lower distribution, whereas “young” bifilms results on the upper distribution. In fatigue life data, Weibull mixtures are due to two failure mechanisms being active: failure due to cracks initiating from surface defects and interior defects. Surface defects are predominant and interior defects lead to fatigue failure only when there are no cracks initiated by surface defects. In all cases, only the mutually exclusive Weibull mixture model was found to be applicable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. All estimated Weibull parameters for the datasets were obtained by using the maximum likelihood method.

  2. Although natural logarithm of the mechanical property data is used conventionally as the x-axis in Weibull probability plots, for fatigue life data, it is the author’s recommendation that logarithm of data with a base 10 be used for easier interpretation.

References

  1. A.A. Griffith: Phil. Trans. Royal Soc. London. Ser. A, 1921, vol. 221, pp. 163-198.

    Article  Google Scholar 

  2. P.F. Thomason: Ductile Fracture of Metals, Pergamon Press, Oxford, UK, 1990.

    Google Scholar 

  3. J.F. Knott: in Recent Advances in Fracture, R.K. Mahidhara, ed., TMS, Warrendale, PA, 1997.

  4. B. Epstein: J. American Stat. Assoc. 1948, vol. 43, pp. 403-412.

    Article  Google Scholar 

  5. F. T. Pierce: J. Textile Inst. 1926, vol. 17, pp. T355-T368.

    Article  Google Scholar 

  6. T.T. Shih: Eng. Frac. Mech., 1980, vol. 13, pp. 257-271.

    Article  Google Scholar 

  7. W. Weibull: J. Applied Mechanics, 1951, vol. 13, 293-297.

    Google Scholar 

  8. N.R. Green, J. Campbell: Mater. Sci. Eng. A, 1993, vol. A173, pp. 261-266.

    Article  Google Scholar 

  9. N.R. Green, J. Campbell: AFS Trans. 1994, vol. 102, pp. 341-347.

    Google Scholar 

  10. M. Tiryakioǧlu, J. Campbell: Metall. Mater. Trans. A, 2010, vol. 41, pp. 3121-3129.

    Article  Google Scholar 

  11. S. Jiang, D. Keçecioğlu, IEEE Trans on Reliability, 1992, vol. 41, pp. 241-247.

    Article  Google Scholar 

  12. M. Cox, M. Wickins, J. P. Kuang, R. A. Harding, J. Campbell: Mater. Sci. Technol. 2000, vol. 16, pp. 1445-1452.

    Article  Google Scholar 

  13. W. Weibull: Proc. The Royal-Swedish Institute for Engineering Research. Nr. 151, 1939.

  14. E.S. Pearson: “The Application of Statistical Methods to Industrial Standardisation and Quality Control”, British Standard No. 600, 1935.

  15. W. Weibull: The Phenomenon of Rupture in Solids, Royal Swedish Institute of Engineering Research (Ingenioersvetenskaps Akad. Handl.), Stockholm, vol. 153, pp. 1–55, 1939.

  16. C. A. Johnson: Frac. Mech. Ceram. 1983, vol. 5, pp. 365-386.

    Article  Google Scholar 

  17. C.D. Tarum: SAE Technical Paper, 1999-01-0055, 1999.

  18. J. Campbell: Castings, 2nd ed., Elsevier, Oxford, 2003.

    Google Scholar 

  19. J. Campbell: Mater. Sci. Technol., 2006, vol. 22, pp. 127–45, 999–1008.

  20. C. Nyahumwa, N. R. Green, J. Campbell; Metall. Mater. Trans. A, 2001, vol. 32A, pp. 349–358.

    Article  Google Scholar 

  21. Q. G. Wang, C. Davidson, J. Griffiths, P. Crepeau; Metall. Mater. Trans. B, 2006, vol. 37B, pp. 887–895.

    Article  Google Scholar 

  22. C. Nyahumwa, N. R. Green, J. Campbell, AFS Trans., 1998, vol. 106, pp. 215-223.

    Google Scholar 

  23. B. Zhang, D. R. Poirier, W. Chen; Metall. Mater. Trans. A, 1999, vol. 30A, pp. 2659-2666.

    Article  Google Scholar 

  24. G. Eisaabadi B. P.Davami, S.K.Kim, M.Tiryakioğlu: Materials Science and Engineering A, 2013, vol. 579, pp. 64-70.

    Article  Google Scholar 

  25. Q.G. Wang, D. Apelian, D.A. Lados: J. Light Metals, 2001, vol. 1, pp. 73-84.

    Article  Google Scholar 

  26. J. Campbell, M. Tiryakioǧlu: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 902-914.

    Article  Google Scholar 

  27. A.K.M.B. Rashid, J. Campbell: Metall. Mater. Trans. A. 2004, vol. 35A, pp. 2063-2071.

    Article  Google Scholar 

  28. K. M. Gruenberg, B. A. Craig, B. M. Hillberry, R. J. Bucci, A. J. Hinkle: Intl. J. Fatigue, 2004, vol. 26, pp. 615–627.

    Article  Google Scholar 

  29. M. Tiryakioğlu: Mater. Sci. Eng. A 2010, vol. A527, pp. 4546-4549.

    Article  Google Scholar 

  30. A. Ardekhani, R. Raiszadeh: J. Mater. Eng. Perform., 2012, vol. 21, 1352-1362.

    Article  Google Scholar 

  31. J.T. Staley, Jr., M. Tiryakioğlu, J. Campbell: Mater. Sci. Eng. A, 2007, vol. 460-461, pp. 324-334.

    Article  Google Scholar 

  32. M. Cox, R. A. Harding, J. Campbell: Mater. Sci. Technol. 2003, vol. 19, pp. 613-625.

    Article  Google Scholar 

  33. D.Z. Li, J. Campbell, Y.Y. Li: J. Mater. Process. Technol., 2004, vol. 148, pp. 310–316.

    Article  Google Scholar 

  34. P. Paris, F. Erdoğan. J Basic Eng, 1963, vol. 85, pp. 528-534.

    Article  Google Scholar 

  35. M.A. Przystupa, R.J. Bucci, P.E. Magnusen, A.J. Hinkle: Intl. J. Fatigue, 1997, vol. 19, pp. S285-288.

    Article  Google Scholar 

  36. M.J. Couper, A,E. Neeson, J.R. Griffths: Fatigue Frac Eng Mater Struct 1990, vol. 13, pp. 213-227.

    Article  Google Scholar 

  37. C.J. Davidson, J.R. Griffiths, A.S. Machin. Fatigue Frac Eng Mater Struct 2002, vol. 25, pp. 223-230.

    Article  Google Scholar 

  38. M. Tiryakioğlu, Metall. Mater. Trans. A, 2009, vol. 40A, pp. 1623-1630.

    Article  Google Scholar 

  39. Y. Murakami, M. Endo. Int J Fatigue, 1994, vol. 16, pp. 163-182.

    Article  Google Scholar 

  40. Y Murakami: JSME Int J 1989, vol. 32, pp. 167-180.

    Google Scholar 

  41. S. Beretta, Y. Murakami: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 517-523.

    Article  Google Scholar 

  42. J. T. Staley, Jr., M. Tiryakioğlu, J. Campbell: Mater. Sci. Eng. A, 2007, vol. 465, pp. 136-145.

    Article  Google Scholar 

  43. O. Umezawa, K. Nagai and K. Ishikawa: Tetsu to Hagane, 1989, vol. 75, pp. 159-166.

    Google Scholar 

  44. H. Mughrabi: Fatigue and Fracture of Eng. Mater. Structures, 2002, vol. 25, pp. 755-764.

    Article  Google Scholar 

  45. K. Sadananda, A.K. Vasudevan, N. Phan: Intl. J. Fatigue, 2007, vol. 29, pp. 2060–2071.

    Article  Google Scholar 

  46. C. Przybyla, R. Prasannavenkatesan, N. Salajegheh, D. L. McDowell: Intl. J. Fatigue, 2010, vol. 32, pp. 512–525.

    Article  Google Scholar 

  47. Y. Nakamura, T. Sakai, H. Hirano, K.S. Ravi Chandran: Intl. J. Fatigue, 2010, vol. 32, pp. 621–626.

    Article  Google Scholar 

  48. C. Bathias: Fatigue Fract Engng Mater Struct., 1999, vol. 22, pp. 559–565.

    Article  Google Scholar 

  49. Q. Y. Wang, J. Y. Berard, A. Dubarre, G. Baudry, S. Rathery, C. Bathias: Fatigue Fract. Eng. Mater. Struct., 1999, vol. 22, pp. 667–672.

    Article  Google Scholar 

  50. O. Umezawa, K. Nagai: ISIJ International, 1997, vol. 37, pp. 1170-1179.

    Article  Google Scholar 

  51. B. Skallerud, T. Iveland, G. Härkegård: Eng. Fracture Mech., 1993, vol. 44, pp. 857-874.

    Article  Google Scholar 

  52. S.A. Barter, L. Molent, N. Goldsmith, R. Jones: J. Eng. Failure Analysis, 2005, vol. 12, pp. 99-128.

    Article  Google Scholar 

  53. B.R. Crawford, C. Loader, A.R. Ward, C. Urbani, M.R. Bache, S.H. Spence, D.G. Hay, W.J. Evans, G. Clark, A.J. Stonham: Fatigue Fract. of Eng. Mater. Struc., 2005, vol. 28, pp. 795-808.

    Article  Google Scholar 

  54. C. Nyahumwa, N.R. Green, and J. Campbell: J. Mechanical Behavior of Materials, 1998, vol. 9, pp. 227-235.

    Article  Google Scholar 

  55. M. Tiryakioğlu, J. Campbell, C. Nyahumwa: Metall. Mater. Trans. B., 2011, vol.42, pp.1098-1103.

    Article  Google Scholar 

  56. C.W.M. Nyahumwa: Ph.D. Thesis, University of Birmingham, U.K., 1997.

  57. B. Sirrell, J. Campbell: AFS Trans., 1997, vol. 105, pp 645-654.

    Google Scholar 

  58. M. Tiryakioǧlu: Mater. Sci. Eng. A, 2014, vol. A601, pp. 116–122.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murat Tiryakioğlu.

Additional information

Manuscript submitted June 26, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiryakioğlu, M. Weibull Analysis of Mechanical Data for Castings II: Weibull Mixtures and Their Interpretation. Metall Mater Trans A 46, 270–280 (2015). https://doi.org/10.1007/s11661-014-2610-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2610-9

Keywords

Navigation