Skip to main content
Log in

The Effect of Carbon on the Transition from Graphite to Cementite Eutectic in Cast Iron

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this work, an analytical solution is proposed to explain the influence of carbon on the transition from graphite to cementite eutectic in cast iron. The outcome from this work indicates that this transition can be related to (a) the graphite nucleation potential (directly characterized by the cell count, N and indirectly by the nucleation coefficients N s and b), (b) the eutectic graphite growth rate coefficient, μ, (c) the temperature range, ∆T sc = T  T c (where T s and T c are the equilibrium temperature for graphite eutectic and the formation temperature for cementite eutectic, respectively), and (d) the liquid volume fraction, f, after pre-eutectic austenite solidification. In addition, the absolute and the relative chilling tendencies, CT and CTr, respectively, as well as the critical cooling rate, Q cr, and the chill width, w, can be predicted from this work. The analytical model was experimentally verified for castings with various carbon contents. It was found that the carbon content increases the eutectic cell count, N while reducing the maximum degree of undercooling at the onset of graphite eutectic solidification, ∆T m. From this work it is evident that the main role of carbon on the transition from graphite to cementite eutectic is through its effect on increasing the growth coefficient and hence, the graphite eutectic growth rate, u. Moreover, at increasing carbon contents the absolute and the relative chilling tendencies including the chill width, all are significantly reduced. Finally, the equations derived using theoretical arguments for the chill width are rather similar to expressions based on a statistical analysis of the experimental outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A.G. Fuller: BCIRA J., 1961, vol. 9, p 693.

  2. J.W. Boyes and A.G Fuller: BCIRA J., 1964, vol. 12, p. 424.

  3. N. Girshovitz: Solidification and Properties of Cast Iron, Mashinostroyene, Moscow-Leningrad, 1966.

  4. J.V. Dawson and H. Maitra: British Foundry, 1976, vol. 4, p. 17.

  5. O.M. Juarez, R.W. Heine, J.R. Loper, AFS Trans., vol. 107, 1999, p. 679.

    Google Scholar 

  6. E.J. Kubick, A. Javaid and F.J. Bradley, AFS Trans., vol.103, 1997, p. 579.

    Google Scholar 

  7. D.A. Sparkman, C.A. Bhaskaran, AFS Trans., vol. 104, 1966, p. 969.

    Google Scholar 

  8. E.J. Kubick, A. Javaid and F.J. Bradley, AFS Trans., vol. 103, 1997, p. 573.

    Google Scholar 

  9. A.G. Fuller, AFS Trans., vol. 94, 1986, p. 863.

    Google Scholar 

  10. W. Oldfield, BCIRA J., vol. 10, 1962, p. 17.

    Google Scholar 

  11. ASM International: ASM Metal Handbook, ASM International, Metals Park, OH, 1988, vol. 15, p. 130.

  12. F. Neuman. Recent Research on Cast Iron, Gordon and Breach, New York, 1998, p. 659.

    Google Scholar 

  13. P. Magnin and W. Kurz: Metall. Trans. A, 1988, vol. 19A, p. 1955.

    Article  Google Scholar 

  14. L. Nastac and D. Stefanecu, AFS Trans., vol. 103, 1995, p. 329.

    Google Scholar 

  15. H. Fredriksson, and H. Swenson. The Physical Metallurgy of Cast Iron, North Holland, New York, 1985, p. 273.

    Google Scholar 

  16. E. Fras, M. Górny and H.F. Lopez: Metall. Mater. Trans. A, vol. 43A, 2012, p. 4204.

    Article  Google Scholar 

  17. E. Fras, M. Górny and H.F. Lopez: Metall. Mater. Trans. A, vol. 44A, 2013, p. 2512.

    Article  Google Scholar 

  18. D.A. Sparkman and C.A. Bhaskaran: AFS Trans., 1996, vol.104, p. 969.

    Google Scholar 

  19. A.A. Zukov, R.J. Sneznoy and N.G. Girsovich, Int. Cast Met. J., vol. 1. 1976, p. 11.

    Google Scholar 

  20. S. Steeb and U. Maier: in The Metallurgy of Cast Iron, B. Lux, I. Minkoff, and F. Mollard, eds., Georgi Publishing Company, St Saphorin, 1975, p. 1.

  21. E. Fras, K. Wiencek, M. Górny and H.F. Lopez, Metall. Mater. Trans. A, vol. 38A, 2007, p. 385.

    Article  Google Scholar 

  22. T.E. Quested and A.L. Greer, Acta Mater., vol. 52, 2004, p. 3859.

    Article  Google Scholar 

  23. P. Magnin and W. Kurz, Acta Metall., vol. 35, 1987, p. 1119.

    Article  Google Scholar 

  24. E. Fras, M. Górny and H.F. Lopez, Metall. Mater. Trans. A, vol. 36A, 2005, p. 3075.

    Article  Google Scholar 

  25. S. Wolfram: The Mathematica Book, 4th ed., Wolfram Media/Cambridge University Press, Champaign/Cambridge, 1999.

    Google Scholar 

  26. R. Heine, AFS Cast Met. Res. J., vol. 3, 1971, p. 49.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugo F. Lopez.

Additional information

Manuscript submitted April 13, 2013.

Appendix

Appendix

See Table V.

Table V List of symbols

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fraś, E., Górny, M. & Lopez, H.F. The Effect of Carbon on the Transition from Graphite to Cementite Eutectic in Cast Iron. Metall Mater Trans A 45, 5601–5612 (2014). https://doi.org/10.1007/s11661-014-2535-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2535-3

Keywords

Navigation