Skip to main content

Advertisement

Log in

Effect of Post-annealing on Grain Boundary of Nano-crystalline Cu Processed by Powder High-Pressure Torsion

  • Communication
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

High tensile strength of 616 MPa and improved ductility of 7.6 pct were obtained in powder-consolidated pure Cu processed by high-pressure torsion (HPT) at room temperature followed by post-annealing at 673 K (400 °C). The powder-HPT consolidation process maintained nano-crystalline microstructures even after post-annealing due to the presence of well-dispersed oxide particles in the matrix. Higher ductility in the post-annealed specimen is attributed to higher fraction of stable Σ3 coincidence site lattice boundaries than that in the HPT-processed Cu.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. J.-H. Shim, W.-S. Ko, J.-Y. Suh, Y.-S. Lee and B.-J. Lee, Met. Mater. Int. 2013, vol. 19, pp. 1221–25.

    Article  Google Scholar 

  2. G.-Y. Kim, J.-H. Jeon, M.-H. Kim, D. Suvorov and S.-Y. Choi, Met. Mater. Int. 2013, vol. 19, pp. 1209–13.

    Article  Google Scholar 

  3. K.H. Lee and S.I. Hong, Korean J. Met. Mater. 2013, vol. 51, pp. 621–7.

    Article  Google Scholar 

  4. E.Y. Yoon, D.J. Lee, B. Park, M.R. Akbarpour, M. Farvizi and H.S. Kim, Met. Mater. Int. 2013, vol. 19, pp. 927–32.

    Article  Google Scholar 

  5. W. Wang, Y. Song, D. Gao, E.Y. Yoon, D.J. Lee, C.S. Lee and H.S. Kim, Met. Mater. Int. 2013, vol. 19, pp. 1021–7.

    Article  Google Scholar 

  6. R.Z. Valiev, R.K. Islamgaliev and I.V. Alexandrov, Prog. Mater. Sci. 2000, vol. 45, pp. 103–89.

    Article  Google Scholar 

  7. S. Kobayashi, A. Kamata and T. Watanabe, Scripta Mater. 2009, vol. 61, pp. 1032–35.

    Article  Google Scholar 

  8. T. Watanabe, J. Mater. Sci. 2011, vol. 46, pp. 4095–115.

    Article  Google Scholar 

  9. R.Z. Valiev and T.G. Langdon, Prog. Mater. Sci. 2006, vol. 51, pp. 881–981.

    Article  Google Scholar 

  10. A.P. Zhilyaev and T.G. Langdon, Prog. Mater. Sci. 2008, vol. 53, pp. 893–979.

    Article  Google Scholar 

  11. A. Vorhauer, S. Kleber and R. Pippan, Mater. Sci. Eng. A 2005, vol. 410–411, pp. 281–4.

    Article  Google Scholar 

  12. D. Orlov, N. Kamikawa and N. Tsuji, Philos. Mag. 2012, vol. 92, pp. 2329–50.

    Article  Google Scholar 

  13. E.Y. Yoon, D.J. Lee, D.H. Ahn, E.S. Lee and H.S. Kim, J. Mater. Sci. 2012, vol. 47, pp. 7770–76.

    Article  Google Scholar 

  14. A. Bachmaier, A. Hohenwarter and R. Pippan, Scripta Mater. 2009, vol. 61, pp. 1016–19.

    Article  Google Scholar 

  15. K. Edalati, Z. Horita, H. Fujiwara and K. Ameyama, Metall. Mater. Trans. A, 2010, vol. 41A, pp. 3308–17.

    Article  Google Scholar 

  16. H. Li, A. Misra, Y. Zhu, Z. Horita, C.C. Koch and T.G. Holesinger, Mater. Sci. Eng. A, 2009, vol. 523, pp. 60–64.

    Article  Google Scholar 

  17. T. Tokunaga, K. Kaneko, K. Sato and Z. Horita, Scripta Mater. 2008, vol. 58, pp. 735–8.

    Article  Google Scholar 

  18. T. Tokunaga, K. Kaneko and Z. Horita, Mater. Sci. Eng. A 2008, vol. 490, pp. 300–4.

    Article  Google Scholar 

  19. V. Randle: The Role of the Coincidence Site Lattice in Grain Boundary Engineering. Institute of Materials, 1996.

  20. P. Lin, G. Palumbo, U. Erb and K.T. Aust, Scripta Metall. Mater. 1995, vol. 33, pp. 1387–92.

    Article  Google Scholar 

  21. D.P. Field and B.L. Adams, Acta Metall. Mater. 1992, vol. 40, pp. 1145–57.

    Article  Google Scholar 

  22. L.C. Lim, Acta Metall. 1987, vol. 35, pp. 1653–62.

    Article  Google Scholar 

  23. D.E. Spearot, M.A. Tschopp, K.I. Jacob and D.L. McDowell, Acta Mater. 2007, vol. 55, pp. 705–14.

    Article  Google Scholar 

  24. T. Zhu and J. Li, Prog. Mater. Sci. 2010, vol. 55, pp. 710–57.

    Article  Google Scholar 

  25. D.G. Brandon, Acta Metall. 1966, vol. 14, pp. 1479–84.

    Article  Google Scholar 

  26. Y. Zhao, T. Topping, J.F. Bingert, J.J. Thornton, A.M. Dangelewicz, Y. Li, W. Liu, Y. Zhu, Y. Zhou and E.J. Lavernia, Adv. Mater. 2008, vol. 20, pp. 3028–33.

    Article  Google Scholar 

  27. N. Krasilnikov, W. Lojkowski, Z. Pakiela and R. Valiev, Mater. Sci. Eng. A, 2005, vol. 397, pp. 330–7.

    Article  Google Scholar 

  28. Y. Jin, B. Lin, M. Bernacki, G.S. Rohrer, A.D. Rollett, N. Bozzolo, Mater. Sci. Eng. A, 2014, vol. 597, pp. 295–303.

    Article  Google Scholar 

  29. M.A. Meyers, A. Mishra and D.J. Benson, Prog. Mater. Sci., 2006, vol. 51, pp. 427–556.

    Article  Google Scholar 

  30. Y.T. Zhu, X.Z. Liao and X.L. Wu, Prog. Mater. Sci. 2012, vol. 57, pp. 1–62.

    Article  Google Scholar 

  31. K. Lu, L. Lu, and S. Suresh, Science 2009, vol. 324, pp. 349–52.

    Article  Google Scholar 

  32. Y. Wang, M. Chen, F. Zhou, and E. Ma, Nature 2002, vol. 419, pp. 912-5.

    Article  Google Scholar 

Download references

This study was supported by A.D.D. through basic research project (11-01-04-08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyoung Seop Kim.

Additional information

Manuscript submitted February 20, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoon, E.Y., Lee, D.J., Park, L.J. et al. Effect of Post-annealing on Grain Boundary of Nano-crystalline Cu Processed by Powder High-Pressure Torsion. Metall Mater Trans A 45, 4748–4752 (2014). https://doi.org/10.1007/s11661-014-2466-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2466-z

Keywords

Navigation