Skip to main content
Log in

Effect of Internal Hydrogen on Delayed Cracking of Metastable Low-Nickel Austenitic Stainless Steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Metastable austenitic stainless steels, especially manganese-alloyed low-nickel grades, may be susceptible to delayed cracking after forming processes. Even a few wppm of hydrogen present in austenitic stainless steels as an inevitable impurity is sufficient to cause cracking if high enough fraction of strain-induced α′-martensite and high residual tensile stresses are present. The role of internal hydrogen content in delayed cracking of several metastable austenitic stainless steels having different alloying chemistries was investigated by means of Swift cup tests, both in as-supplied state and after annealing at 673 K (400 °C). Hydrogen content of the test materials in each state was analyzed with three different methods: inert gas fusion, thermal analysis, and thermal desorption spectroscopy. Internal hydrogen content in as-supplied state was higher in the studied manganese-alloyed low-nickel grades, which contributed to susceptibility of unstable grades to delayed cracking. Annealing of the stainless steels reduced their hydrogen content by 1 to 3 wppm and markedly lowered the risk of delayed cracking. Limiting drawing ratio was improved from 1.4 to 1.7 in grade 204Cu, from 1.7 to 2.0 in grade 201 and from 1.8 to 2.12 in grade 301. The threshold levels of α′-martensite and residual stress for delayed cracking at different hydrogen contents were defined for the test materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. A. Zinbi and A. Bouchou: Eng. Failure Anal., 2010, vol.17, pp. 1028-1037.

    Article  Google Scholar 

  2. A. Frehn and W. Bleck: Stainless Steel World, 2003, Jan/Feb, pp. 40–45.

  3. W.T. Becker and R.J. Shipley, eds.: Failure Analysis and Prevention, ASM Handbook, vol. 11, ASM International, Materials Park, OH, 2002, pp. 809–24.

  4. T. Kanezaki, C. Narazaki, Y. Mine, S. Matsuoka and Y. Murakami: Int. J. Hydrogen Energy, 2008, vol. 33, pp. 2604-2619.

    Article  Google Scholar 

  5. L. Zhang, M. Imade, B. An, M. Wen, T. Iljima, S. Fukuyama and K. Yokogawa: ISIJ Int., 2012, vol. 52, pp. 240-246.

    Article  Google Scholar 

  6. H. Sumitomo, Adv. Technol. Plastic., 1978, vol. II, pp. 1289-1296.

    Google Scholar 

  7. S. Singh and C. Altstetter: Metall. Trans. A, 1982, vol. 13A, pp. 1799-1808.

    Article  Google Scholar 

  8. W. Schaller, T.E. Schmid and E. Snape: Sheet Met. Ind., 1972, vol. 10, pp. 621-624.

    Google Scholar 

  9. H. Hänninen and T. Hakkarainen: Corrosion, 1980, vol. 36, pp. 47-51.

    Article  Google Scholar 

  10. W.-Y. Chu, J. Yao and C.-M. Hsiao: Metall. Trans. A, 1984, vol. 15A, pp. 729-733.

    Article  Google Scholar 

  11. R.T. Van Tol, L. Zhao, L. Bracke, P. Kömmelt, and J. Sietsma, Metall. Mater. Trans. A, 2013, vol. 44A, pp. 4654–60.

    Google Scholar 

  12. C. SanMarchi, B.P. Somerday, X. Tang and G.H. Schiroky: Int. J. Hydrogen Energy, 2008, vol. 33, pp. 889–904.

    Article  Google Scholar 

  13. M.R. Berrahmoune, S. Berveiller, K. Inal and E. Patoor: Mater. Sci. Forum, 2006, vol. 524-525, pp. 95-100.

    Article  Google Scholar 

  14. L. Zhang, B. An, S. Fukuyama, T. Iijima, and K. Yokogawa, J. Appl. Phys., 2010, vol. 108, pp. 063526–1.

    Google Scholar 

  15. S.M. Teus, V.N. Shyvanyuk and V.G. Gavriljuk: J. Mater. Sci. Eng. A, 2008, vol. 497, pp. 290-294.

    Article  Google Scholar 

  16. E. Ratte: Doctoral dissertation, Technical University of Aachen, 2007.

  17. L.P. Karjalainen, T. Taulavuori, M. Sellman, and A. Kyröläinen, Steel Res. Int., 2008, vol. 79, pp. 404-412.

    Google Scholar 

  18. S. Curtze, V.-T. Kuokkala, A. Oikari, J. Talonen and H. Hänninen: Acta Mater., 2011, vol. 59, pp. 1068-1076.

    Article  Google Scholar 

  19. L. Vitos, J.O. Nilsson, and B. Johansson, Acta Mater., 2006, vol. 54, pp. 3821-3826.

    Article  Google Scholar 

  20. M. Sibanda, S.L. Vismer, and R.D. Knutsen, Mater. Lett., 1994, vol. 21, pp. 203-207.

    Article  Google Scholar 

  21. B.M. Gonzalez, C.S.B. Castro, V.T.L. Buono, J.M.C. Vilela, M.S. Andrade, J.M.D. Moraes and M.J. Mantel, J. Mater. Sci. Eng. A, 2003, vol. 343, pp. 51-56.

    Article  Google Scholar 

  22. R.P. Reed, JOM, 1989, vol. 41, pp. 16–21.

    Article  Google Scholar 

  23. J.W. Simmons, J. Mater. Sci. Eng. A, 1996, vol. 207, pp. 159-169.

    Article  Google Scholar 

  24. P.J. Ferreira, I.M. Robertson and H.K. Birnbaum, Mater. Sci. Forum, 1996, vols. 207-209, pp. 93-96.

    Article  Google Scholar 

  25. T. Michler, Y. Lee, R.P. Gangloff, and J. Naumann, Int. J. Hydrogen Energy, 2009, vol. 34, pp. 3201-3209.

    Article  Google Scholar 

  26. S. Berveiller, M. Kemdehoundja, E. Patoor, D. Bouscaud, and M.R. Berrahmoune: ESOMAT 2009—8th Eur. Sympos. Martensitic Transform., Prague, September 7–11, 2009.

  27. K. Hoshino: Trans. ISIJ, 1980, vol. 20, pp. 147-153.

    Google Scholar 

  28. A.I. Kovalev, V.P. Wainstein, V.P. Mishina, and V.V. Zabilsky: in Handbook of Residual Stress and Deformation of Steel, ASM International, Materials Park, OH, 2002, pp. 70–88.

  29. R.P. Gangloff: in Comprehensive Structural Integrity, vol. 6, J. Petit and P.M. Scott, eds., Elsevier, Oxford, 2003.

  30. J. Lufrano, and P. Sofronis, Acta Mater., 1998, vol. 46, pp. 1519-1526.

    Article  Google Scholar 

  31. C. Pan, W.Y. Chu, Z.B. Li, D.T. Liang, Y.J. Su, K.W. Gao, and L.J. Qiao, J. Mater. Sci. Eng. A, 2003, vol. 351, pp. 293-298.

    Article  Google Scholar 

  32. M. Martin, S. Weber, C. Izawa, S. Wagner, A. Pundt and W. Theisen: Int. J. Hydrogen Energy, 2011, vol. 36, pp. 11195-11206.

    Article  Google Scholar 

  33. T. Michler, C. San Marchi, J. Naumann, S. Weber, and M. Martin, Int. J. Hydrogen Energy, 2012, vol. 37, pp. 16231-16246.

    Article  Google Scholar 

  34. L. Zhang, M. Wen, M. Imade, S. Fukuyama and K. Yokogawa: Acta Mater., 2008, vol. 56, pp. 3414-3421.

    Article  Google Scholar 

  35. M.R. Berrahmoune, S. Berveiller, K. Inal and E. Patoor: J. Mater. Sci. Eng. A, 2006, vol. 438-440, pp. 262-266.

    Article  Google Scholar 

  36. T. Michler, J. Naumann and E. Sattler: Int. J. Hydrogen Energy, 2012, vol. 37, pp. 12765-12770.

    Article  Google Scholar 

  37. Y.S. Chun, K.-T. Park, and C.S. Lee, Scripta Mater., 2012, vol. 66, pp. 960-965.

    Article  Google Scholar 

  38. K. Nohara, Y. Ono and N. Ohashi, J. ISIJ, 1977, vol. 63, pp. 212-222.

    Google Scholar 

  39. J. Talonen, P. Aspegren and H. Hänninen: Mater. Sci. Technol., 2004, vol. 20, pp. 1506-1512.

    Article  Google Scholar 

  40. S. Papula, J. Talonen, and H. Hänninen, Metall. Mater. Trans. A, 2014, vol. 45, pp. 1238-1246.

    Article  Google Scholar 

  41. T. Gartka, and T. Dyl, Arch. Metall. Mater., 2006, vol. 51, pp. 199-203.

    Google Scholar 

  42. H.W. Walton: in Handbook of Residual Stress and Deformation of Steel, ASM International, Materials Park, OH, 2002, pp. 89–98.

    Google Scholar 

  43. C. San Marchi, B.P. Somerday, and S.L. Robinson, Int. J. Hydrogen Energy, 2007, vol. 32, pp. 100–16.

    Article  Google Scholar 

  44. L. Ismer, T. Hickel, and J. Neugebauer, Phys. Rev. B, 2010, vol. 81, pp. 094111-1–094111-9.

    Google Scholar 

  45. O. Todoshchenko, Y. Yagodzinskyy, S. Papula, and H. Hänninen: 2012 Int. Hydrogen Conf. Proc., 2014, ASME, NY, pp. 615–23.

  46. A. Lob, D. Senk and B. Hallstedt, Steel Res. Int., 2011, vol. 82, pp. 108-113.

    Article  Google Scholar 

  47. M. Ganchenkova, O. Todoshchenko, Y. Yagodzinskyy and H. Hänninen: 2012 Int. Hydrogen Conf. Proc., 2014, ASME, NY, pp. 605–613.

  48. S. Ortega, S. Papula, T. Saukkonen, J. Talonen, and H. Hänninen: Fatigue Fract. Eng. Mater. Struct., 2014 (in press).

Download references

Acknowledgments

This research was done as part of the FIMECC Light and Efficient Solutions (LIGHT) Research Program funded by the Finnish Funding Agency for Technology and Innovation (Tekes). The test materials were supplied by Outokumpu Oyj. The authors would like to thank FIMECC Ltd, Tekes, Outokumpu Oyj and Doctoral Program in Concurrent Mechanical Engineering financed by the Ministry of Education and the Academy of Finland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suvi Papula.

Additional information

Manuscript submitted February 14, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Papula, S., Talonen, J., Todoshchenko, O. et al. Effect of Internal Hydrogen on Delayed Cracking of Metastable Low-Nickel Austenitic Stainless Steels. Metall Mater Trans A 45, 5270–5279 (2014). https://doi.org/10.1007/s11661-014-2465-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2465-0

Keywords

Navigation