Skip to main content
Log in

The True Origin of Ductile Fracture in Aluminum Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

It has generally been assumed that metals usually fail as a result of microvoid nucleation induced by particle fracture. Here, we concentrate on high-density micropores filled with hydrogen in aluminum, existence of which has been largely overlooked until quite recently. These micropores exhibit premature growth under external loading, thereby inducing ductile fracture, whereas the particle fracture mechanism operates only incidentally. Conclusive evidence of a micropore mechanism is provided by the observation of an instantaneous release of gas at failure. We can therefore conclude that the growth of micropores dominates ductile fracture. Since the material we used has a standard pore density, we can assume that an identical fracture mechanism operates in other aluminum alloys. This finding suggests that intense heat treatment, which is generally believed to enhance the mechanical properties through homogenization, may have entirely the opposite effect. This revelation will have a major impact on the engineering design of metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S.H. Goods and L.M.Brown, Acta Metall.27 (1979) p.1.

    Article  Google Scholar 

  2. F.J.McClintock, Appl. Mech. 35 (1968) p.363.

    Article  Google Scholar 

  3. P.J.Thomason, Inst. Met. 96 (1968) p.360.

    Google Scholar 

  4. R.M. Thomson: in Physical Metallurgy, Elsevier, Amsterdam, 1996.

  5. T.L. Anderson: in Fracture Mechanics, CRC Press, Boca Raton, 1995.

  6. B.L. Bramfitt, R.C. Benn, C.R. Brinkman, and G.F. Vander Voort: Optimization of Processing, Properties, and Service Performance Through Microstructural Control, ASTM STP979, ASTM, Philadelphia, 1988.

  7. W.M.Garrison. Jr, J. Phys. Chem. Solids. 48 (1987) p.1035.

    Article  Google Scholar 

  8. J.P. Tanaka, C.A. Pampillo, and J.R. Low, Jr.: American Society for Testing and Materials, ASTM STP 463, Philadelphia, 1970, p. 191.

  9. H. Toda, T. Kobayashi, and A. Takahashi: Alum. Trans., 1999, vol. 1.1, p. 109.

  10. M.F.Ashby, Phil. Mag. 14 (1966) p.1157.

    Article  Google Scholar 

  11. B.I.Edelson and W.M.Baldwin, Trans ASM.55 (1962) p.230.

    Google Scholar 

  12. A. Koch, P. Cloetens, W. Ludwig, J.C. Labiche, and B. Ferrand: Proc 5th Int. Conf. Inorg. Scintillators and Their Applications, Moscow State University, Moscow, 2000, p. 157.

  13. J. Banhart: Advanced Tomographic Methods in Materials Research and Engineering, Oxford University Press, Oxford, 2008.

    Book  Google Scholar 

  14. H. Toda, I. Sinclair, J.Y. Buffière, E. Maire, K. H. Khor, P. Gregson, T.Kobayashi, Acta Mater.52 (2004) p.1305.

    Article  Google Scholar 

  15. H.Toda, T.Hidaka,M. Kobayashi, K.Uesugi, A.Takeichi, K. Horikawa, Acta Mater.57 (2009) p.2277.

    Article  Google Scholar 

  16. H.Toda, T. Yamaguchi, M.Nakazawa,Y. Aoki,K. Uesugi, Y.Suzuki, M. Kobayashi. Mater. Trans. 51 (2010) p.1288.

    Article  Google Scholar 

  17. S.Masuda,H. Toda, S.Aoyama,S. Orii,S. Ueda,M. Kobayashi, J. Japan Foundry Engng. Soc.81 (2009) p.312.

    Google Scholar 

  18. D.E.Talbot, J. Inter. Metall. Rev.20 (1975) p.166.

    Article  Google Scholar 

  19. H.Toda, K. Minami, K. Koyama, K.Ichitani, M.Kobayashi, K.Uesugi, Y.Suzuki, Acta Mater. 57 (2009) p.4391.

    Article  Google Scholar 

  20. S.G. Lee, G.R. Patel, A.M.Gokhale, A.Sreeranganathan and M.F.Horstemeyer, Mater. Sci. Engng A.427 (2006) p.255.

    Article  Google Scholar 

  21. J.Y.Buffière, S.Savelli, P.H.Jouneau, E.Maire, R.Fougères, Mater. Sci. Engng A. 316 (2001) p.115.

    Article  Google Scholar 

  22. H.Toda, H.Oogo, K.Uesugi and M.Kobayashi, Mater. Trans 50(2009) p.2285.

    Article  Google Scholar 

  23. H.Oogo, H.Toda, K.Uesugi, Y.Suzuki and M.Kobayashi, J. Japan Institute of Light Metals.60 (2010) p.409.

    Article  Google Scholar 

  24. M.Kobayashi, H.Toda,Y. Kawai, T.Ohgaki, K.Uesugi, D.S.Wilkinson,T. Kobayashi, Y.Aoki and M.Nakazawa, Acta Mater.56(2008) p.2167.

    Article  Google Scholar 

  25. H.Toda, E. Maire, Y.Aoki and M.Kobayashi, J. Strain Analysis.46(2011) p.2911.

    Article  Google Scholar 

  26. G.Itoh, M. Kanno,Kinzoku .66 (1996) p.599.

    Google Scholar 

  27. H.B.Aaron and G.R.Kolter, Metall. Trans.2(1971) p.393.

    Article  Google Scholar 

  28. G.W.Greenwood, A.Boltax, J. Nuclear Mater.5 (1962) p.234.

    Article  Google Scholar 

Download references

Acknowledgments

This study was partly undertaken with the support of the Grant-in-aid for Scientific Research from JSPS through Subject No. 20246102. The synchrotron radiation experiments were performed with the approval of JASRI through proposal Nos. 2009B1131 and 2009A1315. The support provided by the Light Metal Educational Foundation to HT is also gratefully acknowledged. The authors thank Dr. Katsumi Koyama for analyzing the hydrogen content of the materials used.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Toda.

Additional information

Manuscript submitted July 3, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toda, H., Oogo, H., Horikawa, K. et al. The True Origin of Ductile Fracture in Aluminum Alloys. Metall Mater Trans A 45, 765–776 (2014). https://doi.org/10.1007/s11661-013-2013-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-2013-3

Keywords

Navigation