Skip to main content
Log in

Sulfidation Characteristics of an Advanced Superalloy and Comparison with Other Superalloys Intended for Gas Turbine Use

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Sulfidation may occur even in an overall oxidizing environment beneath a corrosion product which assumes the role of a diffusion barrier allowing sulfur species transport at a faster rate when compared with that of oxygen species. The current paper presents sulfidation characteristics of an advanced single-crystal nickel-based superalloy (ANS) and compares performance with IN 792 and CMSX-4 superalloys. The results showed that all the superalloys were highly vulnerable to sulfidation and their lives were significantly reduced. Among them, the ANS was more susceptible to sulfidation and its life was reduced considerably. This is attributed to the changed chemistry of the advanced alloy. The results for ANS are compared with its oxidation data and the difference in its behavior is discussed. A degradation mechanism, which represents the deterioration of ANS under sulfidation conditions, is proposed based on the results obtained from different techniques. Finally, the necessity of protective coatings for shielding against high temperature sulfidation for potential application in enhanced efficiency of gas turbine engines is emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M.R. Khajavi and M.H. Shariat: Eng. Fail. Anal., 2004, vol. 11, pp. 589–97.

    Article  CAS  Google Scholar 

  2. J.M. Gallardo, J.A. Rodrigue and E.J. Herrera: Wear, 2002, vol. 252, pp. 264–68.

    Article  CAS  Google Scholar 

  3. N. Eliaz, G, Shemesh and R.M. Latarision: Eng. Fail. Anal., 2002, vol. 9, pp. 31–43.

    Article  CAS  Google Scholar 

  4. T.J. Carter: Eng. Fail. Anal., 2005, vol. 12, pp. 237–47.

    Article  Google Scholar 

  5. R. Nutzel, E. Affeldt and M. Goken: Int. J. Fatigue, 2008, vol. 30, pp. 313–317.

    Article  Google Scholar 

  6. R. S. J. Corran and S. J. Williams: Eng. Fail. Anal., 2007, vol. 14, pp. 518–26.

    Article  Google Scholar 

  7. I. Gurrappa, Oxid. Met., 1999, vol. 51, pp. 353–82.

    Article  CAS  Google Scholar 

  8. I. Gurrappa: J. High Temp. Mater. Sci., 1997, vol. 38, pp. 1–9.

    Google Scholar 

  9. I. Gurrappa: Mater. Sci. Technol., 2003, vol. 19, pp. 178-83.

    Article  CAS  Google Scholar 

  10. I. Gurrappa: J. Mater. Sci. Lett., 1999, vol. 18, pp. 1713–17.

    Article  CAS  Google Scholar 

  11. I. Gurrappa: Surf. Coat. Technol., 2001, vol. 139, pp. 272–83.

    Article  CAS  Google Scholar 

  12. I. Gurrappa, J. Mater. Manuf. Process., 2000, vol. 15, pp. 761–73.

    Article  CAS  Google Scholar 

  13. I. Gurrappa and A. Sambasiva Rao: Surf. Coat. Technol., 2006, vol. 201, pp. 3016–29.

    Article  CAS  Google Scholar 

  14. R. Mevrel: Mater. Sci. Eng. A, 1989, vol. 120–121, pp. 13–24.

    Google Scholar 

  15. R. Mobarra, A. H. Jaffari and M. Karamirezhaad: Surf. Coat. Technol., 2006, vol. 201, pp. 2202–07.

    Article  CAS  Google Scholar 

  16. M. M. Warres: Surf. Coat. Technol., 2003, vol. 163–164, pp. 106-111.

    Google Scholar 

  17. N. Das, US patent 5,925,198, July 1999.

  18. I. V. S. Yashwanth, I. Gurrappa and H. Murakami: J. Surf. Eng. Mater. Adv. Technol., 2011, vol. 1, pp. 130–35.

    CAS  Google Scholar 

  19. I. Gurrappa, I.V.S. Yashwanth and A.K.Gogia: J. Surf. Eng. Mater. Adv. Technol., 2011, vol. 1, pp. 144–49.

    CAS  Google Scholar 

  20. I. Gurrappa, I.V.S. Yashwanth and A.K.Gogia: Gas Turbines, V. Konstarton, ed., INTECH Publishers, USA, 2012, ISBN:979-953-307-816-7.

  21. O. Forsen, M. Keskiala, M.H. Tikkanen and M. Tavi: Mater. Corr., 1990, vol. 41, pp. 692–700.

    Article  CAS  Google Scholar 

  22. S.O. Moussa and M.S. El-Shell: J. Alloys Comp., 2007, vol. 440, pp. 178–88.

    Article  CAS  Google Scholar 

  23. W.H. Lee and R.Y. Lin: Mater. Chem. Phys., 2003, vol. 77, pp. 86–96.

    Article  CAS  Google Scholar 

  24. H.L. Du, P.K. Datta, J.S. Burnell-Gray, A.S. James and A. Matthews: Surf. Coat. Technol., 1996, vol. 81, pp. 151–58.

    Article  CAS  Google Scholar 

  25. H.L. Du, P.K. Datta, J.S. Burnell-Gray and K.N. Strafford: Corr. Sci., 1994, vol. 36, pp. 99–112.

    Article  CAS  Google Scholar 

  26. S. Mrowec and K. Przybyski: Oxd. Met., 1985, vol. 36, pp. 107–27.

    Article  CAS  Google Scholar 

  27. O. Kubaschewski and C.B. Alcock: in Metallurgical Thermochemistry, 5th edn, Pergamon Press, London, 1979.

Download references

Acknowledgments

The first author (IG) would like to thank the European Commission for providing financial assistance as a Marie Curie Fellow. He would also like to express his gratitude to Prof. P. Rama Rao, ARCI, and Dr.G. Malakondaiah, Director, DMRL, for their support and constant encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Gurrappa.

Additional information

Manuscript submitted October 16, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gurrappa, I., Yashwanth, I.V.S. & Burnell-Gray, J.S. Sulfidation Characteristics of an Advanced Superalloy and Comparison with Other Superalloys Intended for Gas Turbine Use. Metall Mater Trans A 44, 5270–5280 (2013). https://doi.org/10.1007/s11661-013-1859-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-1859-8

Keywords

Navigation