Skip to main content
Log in

Identification of Defect Prone Peritectic Steel Grades by Analyzing High-Temperature Phase Transformations

  • Symposium: Defects and Properties of Cast Metals
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Continuous casting of peritectic steels is often difficult and critical; bad surface quality, cracks, and even breakouts may occur. The initial solidification of peritectic steels within the mold leads to formation of surface depressions and uneven shell growth. As commercial steels are always multicomponent alloys, the influence also of the alloying elements besides carbon on the peritectic phase transition needs to be taken into account. Information on the solidification sequence and phase diagrams for initial solidification are lacking especially for new steel grades, like high-alloyed TRIP-steels with high Mn, Si, and particularly high Al contents. Based on a comprehensive method development, the current study shows that differential scanning calorimeter measurements allow a clear prediction if an alloy is peritectic (i.e., critical to cast). In order to confirm these results, thermo-optical analyses with a high-temperature laser-scanning-confocal-microscope are performed to observe the phase transformations in situ up to the melting point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. H. Murakami, M. Suzuki, T. Kitagawa, and S. Miyahara: Tetsu-to-Hagane, 1992, vol. 78, pp. 105-11.

    CAS  Google Scholar 

  2. Y. Sugitani, and M. Nakamura: Tetsu-to-Hagane, 1979, vol. 65, pp. 1702-11.

    CAS  Google Scholar 

  3. C. Bernhard: Berg und Huettenmännische Monatshefte, 2004, vol. 149, pp. 90-95.

    CAS  Google Scholar 

  4. R. Pierer, S. Griesser, J. Reiter and C. Bernhard: Berg und Huettenmännische Monatshefte, 2009, vol. 154, pp. 346-353.

    Article  CAS  Google Scholar 

  5. A. Grill, and J.K. Briamcombe: Ironmaking and Steelmaking, 1976, vol. 2, pp. 76-79.

    Google Scholar 

  6. Y. Maehara, K. Yasumoto, H. Tomono, T. Nagamichi and Y. Ohmori: Materials Science and Technology, 1990, vol. 6, pp. 793-806.

    Article  CAS  Google Scholar 

  7. R. Pierer and C. Bernhard: Materials Science and Technology, Cincinnati, 2006.

  8. G. Xia, C. Bernhard, S. Ilie and C. Fürst: 6th European Conference on Continuous Casting, 2008, Riccione, Italy.

    Google Scholar 

  9. A. Jablonka, K. Harste and K. Schwerdtfeger: Steel Research, 1991, vol. 62, no.1, 24-33.

    CAS  Google Scholar 

  10. FactSage: Version 6.2, Database FSstel, Thermfact and GTT-Technologies, 2010.

  11. M. Tisza: Physical Metallurgy for Engineers, ASM Metals Park Ohio, 2001.

  12. ThermoCalc: Version 5, Database TCFE 6, Thermo-Calc Software, 2010.

  13. J. Chipman: Metals Handbook, ASM Metals Park Ohio, 1973.

  14. R. Sriniuasan: Engineering materials and metallurgy, Tarta, Mc Grawhill Education Private Ltd. India, 2010.

    Google Scholar 

  15. G. Xia: Habilitation Treatise, Chair of Metallurgy, University of Leoben, 2011.

  16. T. Emi and H. Fredriksson: Materials Science and Engineering, 2005, vol. A413-414, pp. 2-9.

    Google Scholar 

  17. G. Xia, H. P. Narzt, C. Furst, K. Morwald, J. Moertl, P. Reisinger and L. Lindenberger: Ironmaking and Steelmaking, 2004, vol. 31, no.5, pp. 364-370.

    Article  CAS  Google Scholar 

  18. M. Wolf: Continuous Casting Volume Nine, Zürich, Switzerland, 1997, pp. 59-68.

    Google Scholar 

  19. A.A. Howe: Applied Scientific Research, 1987, vol. 44, pp. 51-59.

    Article  CAS  Google Scholar 

  20. A. Kagawa and T. Okamoto: Material Science and Technology, 1986, vol. 2, 998-1008.

    Article  Google Scholar 

  21. K. E. Blazek, O. Lanzi Iii, P. L. Gano, and D. L. Kellogg: AISTech 2007, Indianapolis, 2007.

  22. MTDat: Phase Diagram Software, The National Physical Laboratory, Version 5.1, 2012.

  23. PANDAT: PanPhase Diagramm, CompuTherm LLC, 2012.

  24. J. Lacaze and B. Sundman: Metall. Trans. A, 1991, vol. 22A, no.10, pp. 2211-2223.

    CAS  Google Scholar 

  25. J. Miettinen: Calphad, 1998, vol. 22, no.2, pp. 231-256.

    Article  CAS  Google Scholar 

  26. D. Connetable, J. Lacaze, P. Maugis and B. Sundman: Calphad, 2008, vol. 32. no.2, pp. 361-370.

    Article  CAS  Google Scholar 

  27. G.W. Höhne, H.W. Hemminger and H.J. Flammersheim: Differential scanning calorimetry: an introduction for practitioners, Springer, Berlin, 1996.

    Book  Google Scholar 

  28. W.J. Boettinger, U.R. Kattner, K.-W. Moon, and J.H. Perepezko: DTA and Heat-flux DSC Measurements of Alloy Melting and Freezing, NIST Recommended Practice Guide, Special Publication 960-15, 2006.

  29. Software: NETZSCH DSC/DTA Corrections, Version 2006.01, Netzsch-Gerätebau, 2006.

  30. H. Yin, T. Emi and H. Shibata: ISIJ International, 1998, vol. 38, no.8, pp. 794-801.

    Article  CAS  Google Scholar 

  31. N. J. McDonald and S. Sridhar: Journal of Materials Science, 2005, vol. 40, no.9-10, pp. 2411-2416.

    Article  CAS  Google Scholar 

  32. M. Reid, D. Phelan and R. Dippenaar: ISIJ International, 2004, vol. 44, no.3, pp.565-572.

    Article  CAS  Google Scholar 

  33. D. Phelan, M. Reid and R. Dippenaar: Metallurgical and Materials Transactions A, 2006, vol. A37, no. 3, pp. 985-994.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial supports by the Austrian Federal Government (in particular from the Bundesministerium für Verkehr, Innovation und Technologie and the Bundesministerium für Wirtschaft und Arbeit) and the Styrian Provincial Government, represented by Österreichische Forschungsförderungsgesellschaft mbH and by Steirische Wirtschaftsförderungsgesellschaft mbH, within the research activities of the K2 Competence Centre on “Integrated Research in Materials, Processing and Product Engineering,” operated by the Materials Center Leoben Forschung GmbH within the framework of the Austrian COMET Competence Centre Programme and the industry partners Siemens VAI Metals Technologies GmbH and voestalpine Stahl GmbH are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Presoly.

Additional information

Manuscript submitted August 28, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Presoly, P., Pierer, R. & Bernhard, C. Identification of Defect Prone Peritectic Steel Grades by Analyzing High-Temperature Phase Transformations. Metall Mater Trans A 44, 5377–5388 (2013). https://doi.org/10.1007/s11661-013-1671-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-1671-5

Keywords

Navigation