Skip to main content

Advertisement

Log in

Ratcheting Behavior of a Titanium-Stabilized Interstitial Free Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Engineering stress-control ratcheting behavior of a titanium-stabilized interstitial free steel has been studied under different combinations of mean stress and stress amplitude at a stress rate of 250 MPa s−1. Tests have been done up to 29.80 pct true ratcheting strain evolution in the specimens at three maximum stress levels. It is observed that this amount of ratcheting strain is more than the uniform tensile strain at a strain rate of 10−3 s−1 and evolves without showing tensile instability of the specimens. In the process of ratcheting strain evolution at constant maximum stresses, the effect of increasing stress amplitude is found to be more than that of increasing the mean stress component. Further, the constant maximum stress ratcheting test results reveal that the number of cycles (N) required for 29.80 pct. true ratcheting strain evolution exponentially increases with increase of stress ratio (R). Post-ratcheting tensile test results showing increase of strength and linear decrease in ductility with increasing R at different constant maximum stresses indicate that stress parameters used during ratcheting tests influence the size of the dislocation cell structure of the steel even with the same amount of ratcheting strain evolution. It is postulated that during ratcheting fatigue, damage becomes greater with the increase of R for any fixed amount of ratcheting strain evolution at constant maximum stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Z. Xia, D. Kujawski, and F. Ellyin: Int. J. Fatigue, 1996, vol. 18, pp. 335–41.

    Article  CAS  Google Scholar 

  2. J. Polak: Cyclic Plasticity and Low Cycle Fatigue Life of Metals, Elsevier Science Ltd, Amsterdam, 1991.

  3. N.E. Dowling: Mechanical Behavior of Materials, Prentice Hall, Upper Saddle River, New Jersey, 1999.

  4. R.J. Rider, S.J. Harvey, H.D. Chandler: Int. J. Fatigue, 1995, vol. 17, pp. 507–11.

    Article  CAS  Google Scholar 

  5. X. Yang: Int. J. Fatigue, 2005, vol. 27, pp. 1124–32.

    Article  CAS  Google Scholar 

  6. M. Karadag and R.I. Stephens: Int. J. Fatigue, 2003, vol. 25, pp. 191–200.

    Article  CAS  Google Scholar 

  7. C. Gupta, J. Chakravartty, G. Reddy and S. Banerjee: Int. J. Press. Vessels Pip., 2005, vol. 82, pp. 459–69.

    Article  CAS  Google Scholar 

  8. S. Kulkarni: Int. J. Press. Vessels Pip., 2003, vol. 80, pp. 179–85.

    Article  CAS  Google Scholar 

  9. S. Sinha and S. Ghosh: Int. J. Fatigue, 2006, vol. 28, pp. 1690–1704.

    Article  CAS  Google Scholar 

  10. C. L. Xie, S. Ghosh and M. Groeber: J. Eng. Mater. Technol., 2004, vol. 126, pp. 339.

    Article  CAS  Google Scholar 

  11. X. Feaugas and C. Gaudin: Int. J. Plast., 2004, vol. 20, pp. 643–62.

    Article  CAS  Google Scholar 

  12. C. Gaudin, X. Feaugas: Acta Mater., 2004, vol. 52, pp. 3097–3110.

    Article  CAS  Google Scholar 

  13. G. Kang, Q. Gao, X. Yang: Mech Mater, 2002, vol. 34, pp. 145–59.

    Article  Google Scholar 

  14. G. Kang, Y. Liu, Z. Li: Mater. Sci. Eng. A, 2006, vol. 435-436, pp. 396–404.

    Google Scholar 

  15. J.L. Chaboche and D. Nouailhas: J. Eng. Mater. Technol., 1989, vol. 111, pp. 384–92.

    Article  Google Scholar 

  16. M.B. Ruggles and E. Krempl: J. Eng. Mater. Technol., 1989, vol. 111, pp. 378–83.

    Article  CAS  Google Scholar 

  17. M.B. Ruggles and E. Krempl: J. Mech. Phys. Solids, 1990, vol. 38, pp. 575–85.

    Article  Google Scholar 

  18. N. Ohno and M. Abdel-Karim: J. Eng. Mater. Technol., 2000, vol. 122, pp. 35–41.

    Article  CAS  Google Scholar 

  19. G. Kang and Y. Liu: Mater. Sci. Eng. A, 2008, vol. 472, pp. 258–68.

    Article  Google Scholar 

  20. G. Kang, Y. Liu, J. Ding and Q. Gao: Int. J. Plast., 2009, vol. 25, pp. 838–60.

    Article  CAS  Google Scholar 

  21. L. Kunz and P. Lukas: Mater. Sci. Eng. A, 2001, vol. 319-321, pp. 555–58.

    Google Scholar 

  22. M. Yaguchi and Y. Takahashi: Int. J. Plast., 2005, vol. 21, pp. 43–65.

    Article  CAS  Google Scholar 

  23. P.J. Armstrong and C.O. Frederick: Technical Report RD/B/N/731, C.E.G.B, Central Electricity Generating Board, Berkeley, 1966.

  24. J.L. Chaboche: Int. J. Plast., 1991, vol. 7, pp. 661–78.

    Article  CAS  Google Scholar 

  25. J.L. Chaboche: Eur. J. Mech. A. Solids, 1994, vol. 13, pp. 501–18.

    Google Scholar 

  26. N. Ohno and J.D. Wang: Int. J. Plast., 1993, vol. 9, pp. 375–89.

    Article  CAS  Google Scholar 

  27. N. Ohno and J.D. Wang: Int. J. Plast., 1993, vol. 9, pp. 390–403.

    Google Scholar 

  28. N. Ohno and J.D. Wang: Eur. J. Mech. A. Solids, 1994, vol. 13, pp. 519–31.

    Google Scholar 

  29. Y. Jiang and H. Sehitoglu: Int. J. Plast., 1994, vol. 10, pp. 579–608.

    Article  Google Scholar 

  30. Y. Jiang and H. Sehitoglu: J. Eng. Mater. Technol., 1996, vol. 63, pp. 720–33.

    CAS  Google Scholar 

  31. Y. Jiang and P. Kurath: Int. J. Plast., 1996, vol. 12, pp. 387–415.

    Article  CAS  Google Scholar 

  32. M. Abdel-Karim and N. Ohno: Int. J. Plast., 2000, vol. 16, pp. 225–40.

    Article  CAS  Google Scholar 

  33. G.Z. Kang, Q. Gao and X.J. Yang: Int. J. Non Linear Mech., 2004, vol. 39, pp. 843–57.

    Article  Google Scholar 

  34. G.Z. Kang and Q. Gao: Mech. Mater., 2002, vol. 34, pp. 809–20.

    Article  Google Scholar 

  35. G.Z. Kang: Mech. Mater., 2004, vol. 36, pp. 299–312.

    Article  Google Scholar 

  36. X. Chen and R. Jiao: Int. J. Plast., 2004, vol. 20, pp. 871–98.

    Article  CAS  Google Scholar 

  37. X. Chen, R. Jiao and K.S. Kim: Int. J. Plast., 2005, vol. 21, pp. 161–84.

    Article  Google Scholar 

  38. T. Hassan and S. Kyriakides: Int. J. Plast., 1992, vol. 8, pp. 91–116.

    Article  CAS  Google Scholar 

  39. T. Hassan, E. Corona and S. Kyriakides: Int. J. Plast., 1992, vol. 8, pp. 117–46.

    Article  CAS  Google Scholar 

  40. G. Chen, X. Chen and C. Niu: Mater. Sci. Eng. A, 2006, vol. 421, pp. 238–44.

    Article  Google Scholar 

  41. S.J. Park, K.S. Kim and H.S. Kim: Fatigue Fract. Eng. Mater. Struct., 2007, vol. 30, pp. 1076–83.

    Article  CAS  Google Scholar 

  42. S.K. Paul, S. Sivaprasad, S. Dhar and S. Tarafder: Mater. Sci. Eng. A, 2011, vol. 528, pp. 4873–82.

    Article  CAS  Google Scholar 

  43. S.K. Paul, S. Sivaprasad, S. Dhar and S. Tarafder: Int. J. Press. Vessels Pip., 2010, vol. 87, pp. 440–46.

    Article  CAS  Google Scholar 

  44. H. Mughrabi and H.J. Christ: ISIJ Int., 1997, vol. 37, pp. 1154–69.

    Article  CAS  Google Scholar 

  45. N. Narasaiah, P.C. Chakraborti, R. Maity and K.K. Ray: ISIJ Int., 2005, vol. 45, pp. 127–32.

    Article  CAS  Google Scholar 

  46. S. Majumdar, D. Bhattacharjee and K.K. Ray: Metall. Mater. Trans. A, 2008, vol. 39A, pp 1676–90.

  47. S. Majumdar, D. Bhattacharjee and K.K. Ray: Scripta Mater., 2011, vol. 64, pp. 288–91.

    Article  CAS  Google Scholar 

  48. M.T. Milan, D. Spinelli and W.W.B. Filho: Int. J. Fatigue, 2001, vol. 23, pp. 129–33.

    Article  CAS  Google Scholar 

  49. C.-C. Shih, N.-J. Ho and H.-L. Huang: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 1995–2001.

    Article  CAS  Google Scholar 

  50. M.A. Islam and Y. Tomota: Adv. Mater. Res., 2007, vol. 15-17, pp. 804–09.

    Article  Google Scholar 

  51. M.N. James: Eng. Fract. Mech., 2010, vol. 77, pp. 1998–2007.

    Article  Google Scholar 

  52. M.A. Islam and Y. Tomota: Int. J. Mater. Res., 2006, vol. 97, pp. 1559–65.

    CAS  Google Scholar 

  53. A. Daniélou, J. Rivat, M. Robillard, J. Stolarz and T. Magnin: Mater. Sci. Eng. A, 2001, vol. 319-321, pp. 550–54

    Google Scholar 

  54. Surajit Kumar Paul: Mater. Sci. Eng., A, 2012, vol. 538, pp. 349–55.

  55. F. Lorenzo and C. Laird: Acta Metall., 1984, vol. 32, pp. 681–92.

    Article  CAS  Google Scholar 

  56. M. Caul and V. Randle : Mater. Char., 1997, vol. 38, pp. 155–63.

    Article  CAS  Google Scholar 

  57. M Caul, V Randle and L Burrows: Ironmaking Steelmaking, 1997, vol. 24, pp. 368–72.

    CAS  Google Scholar 

  58. S. Sivaprasad, S.K. Paul, S. K. Gupta, V. Bhasin, N. Narasaiah, S. Tarafder: Int. J. Press. Vessels Pip., 2010, vol. 87, pp. 464–69.

    Article  CAS  Google Scholar 

  59. F. Lorenzo and C. Laird: Acta Metall., 1984, vol. 32, pp. 671–80.

    Article  CAS  Google Scholar 

  60. H.D. Chandler and J.V. Bee: Acta Metall., 1985, vol. 33, pp. 1121–27.

    Article  CAS  Google Scholar 

  61. C.E. Feltner: Acta Metall., 1963, vol. 11, pp. 817––28.

    Article  Google Scholar 

  62. G. Kang, Y. Dong, H. Wang, Y. Liu, and X. Cheng: Mater. Sci. Eng. A, 2010, vol. 527, pp. 5952–61.

    Article  Google Scholar 

  63. S.I. Hong and C. Laird: Mater. Sci. Eng. A, 1990, vol. 124, pp. 183–201.

    Article  Google Scholar 

  64. S.I. Hong and C. Laird: Mater. Sci. Eng. A, 1990, vol. 128, pp. 155–69.

    Article  Google Scholar 

  65. V. Kliman and M. Bily: Mater. Sci. Eng., 1980, vol. 44, pp. 73–79.

    Article  Google Scholar 

  66. S.K. Paul, S. Sivaprasad, S. Dhar and S. Tarafder: J. Nucl. Mater., 2010, vol. 401, pp. 17–24.

    Article  CAS  Google Scholar 

  67. A.P.L. Turner and T.J. Martin: Metall. Trans. A, 1980, vol. 11A, pp. 475–81.

    CAS  Google Scholar 

  68. F. Lorenzo and C. Laird: Mater. Sci. Eng., 1984, vol. 62, pp. 205–10.

    Article  Google Scholar 

  69. R. Eckert, C. Laird and J. Bassani: Mater. Sci. Eng., 1987, vol. 91, pp. 81–88.

    Article  CAS  Google Scholar 

  70. P. Lukas and L. Kunz: Int. J. Fatigue, 1989, vol. 11, pp. 55–58.

    Article  Google Scholar 

  71. C. Holste, W. Kleinert, R. Gurth and K. Mecke: Mater. Sci. Eng. A, 1994, vol. 187, pp. 113–23.

    Article  Google Scholar 

  72. C. Lim, K. Kim and J. Seong: Int. J. Fatigue, 2009, vol. 31, pp. 501–07.

    Article  CAS  Google Scholar 

  73. K. Dutta, S. Sivaprasad, S. Tarafder and K.K. Ray: Mater. Sci. Eng. A, 2010, vol. 527, pp. 7571–79.

    Article  Google Scholar 

Download references

Acknowledgments

The study has been supported by the research Grant received from TATA Steel Ltd. One of the authors (PSD) acknowledges the award of the Senior Research Fellowship from the Council of Scientific and Industrial Research (CSIR) for carrying out the current investigation at Jadavpur University, Kolkata, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. S. De.

Additional information

Manuscript submitted January 11, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De, P.S., Chakraborti, P.C., Bhattacharya, B. et al. Ratcheting Behavior of a Titanium-Stabilized Interstitial Free Steel. Metall Mater Trans A 44, 2106–2120 (2013). https://doi.org/10.1007/s11661-012-1568-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1568-8

Keywords

Navigation