Skip to main content
Log in

Assessing Local Structure in PbZn1/3Nb2/3O3 Using Diffuse Scattering and Reverse Monte Carlo Refinement

  • Symposium: Neutron and X-Ray Studies of Advanced Materials V
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

We use an extensive X-ray diffuse scattering dataset collected from the relaxor ferroelectric PbZn1/3Nb2/3O3 to study the feasibility of refining a nanoscale structure with the reverse Monte Carlo method. Six integer and non-integer reciprocal sections are used with a total number of nearly 105 symmetry-independent data points. Very good agreement between observed and calculated diffuse scattering patterns is achieved with rather subtle diffuse intensity modulations being satisfactorily reproduced. The correlations within the refined local structure are related to the possible physical mechanisms behind them. We discuss the ambiguity of the obtained results and feasible constraining schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. T.R. Welberry: Diffuse X-ray Scattering and Models of Disorder, International Union of Crystallography Monographs on Crystallography, Oxford University Press, 2004

  2. Honjo G., Kodera S., Kitamura N. (1964) J. Phys. Soc. Jpn. 19(3): 351–367

    Article  CAS  Google Scholar 

  3. Harada J., Honjo G. (1967) J. Phys. Soc. Jpn. 22(1):45–57

    Article  CAS  Google Scholar 

  4. Comes R., Lambert M., Guinier A. (1968) Solid State Commun. 6(10):715–719

    Article  CAS  Google Scholar 

  5. J. Hlinka, T. Ostapchuk, D. Nuzhnyy, J. Petzelt, P. Kuzel, C. Kadlec, P. Vanek, I. Ponomareva, and L. Bellaiche: Phys. Rev. Lett., 2008, vol. 101, p. 167402.

  6. A. Bokov and Z.-G. Ye: J. Mater. Sci., 2006, vol. 41, pp. 31–52. DOI:10.1007/s10853-005-5915-7.

  7. Hlinka J. (2012) J. Adv. Dielectrics. 2(2):1241006

    Article  Google Scholar 

  8. Terado Y., Kim SJ., Moriyoshi C., Kuroiwa Y., Iwata M.,Takata M. (2006) Jpn. J. Appl. Phys. 45(9B):7552–7555

    Article  CAS  Google Scholar 

  9. Kuwata J., Uchino K., Nomura S. (1982) Jpn. J. Appl. Phys. 21:1298

    Article  CAS  Google Scholar 

  10. Kuwata J., Uchino K., Nomura S. (1981) Ferroelectrics. 37:579–582

    Article  CAS  Google Scholar 

  11. Forrester J.S., Kisi E.H., Knight K.S., Howard C.J. (2006) J. Phys. Condens. Matter. 18(19):L233

    Article  CAS  Google Scholar 

  12. Kisi EH., Forrester JS. (2005) J. Phys. Condens. Matter. 17(36):L381

    Article  CAS  Google Scholar 

  13. Bonneau P., Garnier P., Husson E., Morell A. (1989) Mater. Res. Bull. 24(2):201–06

    Article  CAS  Google Scholar 

  14. Bonneau P., Garnier P., Calvarin G., Husson E., Gavarri J.R., Hewat A.W., Morell A. (1991) J. Solid State Chem. 91(2):350–361

    Article  CAS  Google Scholar 

  15. Stock C., Birgeneau R.J., Wakimoto S., Gardner J.S., Chen W., Ye Z.-G., Shirane G. (2004) Phys Rev. B 69:094104

    Article  Google Scholar 

  16. H. You and Q.M. Zhang: Phys. Rev. Lett., 1997, vol. 79 (20), pp. 3950–53.

  17. Hirota K., Ye Z.-G., Wakimoto S., Gehring P.M., Shirane G. (2002) Phys Rev. B 65(10):104105

    Article  Google Scholar 

  18. Welberry T. R., Gutmann M.J., Woo H., Goossens D.J. , Xu G., Stock C., Chen W., Ye Z.-G. (2005) J. Appl. Crystallogr. 38(4):639–647

    Article  Google Scholar 

  19. Welberry T.R., Goossens D.J., Gutmann M.J. (2006) Phys. Rev. B. 74(22):224108

    Article  Google Scholar 

  20. Whitfield R.E., Goossens D.J., Studer A.J., Forrester J.S. (2012) Metall. Mater. Trans. A 43A:1423–1428

    Article  Google Scholar 

  21. Whitfield R.E., Goossens D.J., and Studer A.J. (2012) Metall. Mater. Trans. A 43A:1429–1433

    Article  Google Scholar 

  22. Mihailova B., Maier B., Paulmann C., Malcherek T., Ihringer J., Gospodinov M., Stosch R., Güttler B., Bismayer U. (2008) Phys. Rev. B., 77:174106

    Article  Google Scholar 

  23. Maier B., Mihailova B., Paulmann C., Ihringer J., Gospodinov M., Stosch R., Güttler B., Bismayer U. (2009) Phys. Rev. B 79:224108

    Article  Google Scholar 

  24. Ganesh P., Cockayne E., Ahart M., Cohen R.E., Burton B., Hemley R.J., Ren Y., Yang W., Ye Z.-G. (2010) Phys. Rev. B. 81(14):144102

    Article  Google Scholar 

  25. Paściak M., Wolcyrz M., Pietraszko A. (2007) Phys. Rev. B. 76(1):014117

    Article  Google Scholar 

  26. Welberry T.R., Goossens D.J. (2008) J. Appl. Crystallogr. 41(3):606–614

    Article  CAS  Google Scholar 

  27. T.R. Welberry: Metall. Mater. Trans. A, 2008, 39A, pp. 3170–3178. DOI:10.1007/s11661-008-9572-8.

  28. Bosak A., Chernyshov D., Vakhrushev S., Krisch M. (2012) Acta Crystallogr. Sect. A. 68(1):117–123

    Article  CAS  Google Scholar 

  29. McGreevy R.L., Pusztai L. (1988) Mol. Simul. 1(6):359–367

    Article  Google Scholar 

  30. Nield V.M., Keen D.A., McGreevy R.L. (1995) Acta Crystallogr. Sect. A 51(5):763–771

    Article  Google Scholar 

  31. Krawczyk J., Pietraszko A., Kubiak R., Lukaszewicz K. (2003) Acta Crystallogr. Sect. B. 59(3):384–392

    Article  CAS  Google Scholar 

  32. Lukaszewicz K., Pietraszko A., Kucharska M. (2005) Acta Crystallogr. Sect. B. 61(5):473–480

    Article  CAS  Google Scholar 

  33. R.B. Neder and Th. Proffen. Diffuse Scattering and Defect Structure Simulations. Oxford University Press, Oxford. 2009.

    Google Scholar 

  34. Proffen Th., Welberry T.R. (1997) Acta Crystallogr. Sect. A. 53(2):202–216

    Article  Google Scholar 

  35. M.A. Estermann and W. Steurer. Phase Transit. 67(1):165–195

    Article  CAS  Google Scholar 

  36. Proffen Th., Neder R. B. (1997) J. Appl. Crystallogr. 30(2):171–175

    Article  CAS  Google Scholar 

  37. Burkovsky R.G., Filimonov A.V., Rudskoy A.I., Hirota K., Matsuura M., Vakhrushev S.B. (2012) Phys. Rev. B. 85:094108

    Article  Google Scholar 

  38. M.A. Akbas and P.K. Davies (1997) J. Am. Ceram. Soc. 80(11):2933–2936

    Article  CAS  Google Scholar 

  39. Yan Y., Pennycook S.J., Xu Z., Viehland D. (1998) Appl. Phys. Lett. 72(24):3145–3147

    Article  CAS  Google Scholar 

  40. S. Vakhrushev, A. Nabereznov, S.K. Sinha, Y.P. Feng, and T. Egami: J. Phys. Chem. Solids, 1996, vol. 57 (10), pp. 1517–1523.

  41. Vakhrushev S.B., Kvyatkovsky B.E., Naberezhnov A.A., Okuneva N.M., Toperverg B.P. (1989) Ferroelectrics. 90(1):173–176

    Article  CAS  Google Scholar 

  42. Viehland D., Li JF., Jang S.J., Eric Cross L., Wuttig M. (1991) Phys. Rev. B. 43:8316–8320

    Article  CAS  Google Scholar 

  43. M. Paściak, T.R. Welberry, J. Kulda, M. Kempa, and J. Hlinka: Phys. Rev. B, 2012, vol. 84 (22), p. 224109.

    Article  Google Scholar 

  44. Jeong I.-K., Darling TW., Lee J.K., Proffen Th., Heffner R.H., Park J.S., Hong K.S., Dmowski W., Egami T. (2005) Phys. Rev. Lett. 94(14):147602

    Article  Google Scholar 

  45. Hlinka J., Kamba S., Petzelt J., Kulda J., Randall C.A., Zhang S.J. (2003) J. Phys. Condens. Matter. 15(24):4249

    Article  CAS  Google Scholar 

  46. Stock C., Van Eijck L., Fouquet P., Maccarini M., Gehring P.M., Xu G., Luo H., Zhao X., Li J.-F., Viehland D (2010) Phys. Rev. B. 81:144127

    Article  Google Scholar 

  47. Welberry T.R. (1986) J. Appl. Crystallogr. 19(5):382–389

    Article  CAS  Google Scholar 

  48. Swainson I.P., Stock C., Gehring P.M., Xu G., Hirota K., Qiu Y., Luo H., Zhao X., Li J.-F., Viehland D. (2009) Phys. Rev. B. 79(22):224301

    Article  Google Scholar 

  49. Hlinka J., Ondrejkovic P., Kempa M., Borissenko E., Krisch M., Long X., Ye Z.-G. (2011) Phys. Rev. B. 83(14):140101

    Article  Google Scholar 

  50. Baake M., Grimm U. (2009) Phys. Rev. B. 79:020203

    Article  Google Scholar 

  51. Baba-Kishi K.Z., Pasciak M. (2010) J. Appl. Crystallogr. 43(1):140–150

    Article  CAS  Google Scholar 

  52. Maier B. J., Welsch A.-M., Mihailova B., Angel R.J., Zhao J., Paulmann C., Engel J.M., Marshall W.G., Gospodinov M., Petrova D., Bismayer U. (2011) Phys. Rev. B. 83:134106

    Article  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the Australian Research Council for support through its Discovery Projects program. REW thanks AINSE for the support of postgraduate research award. Use of the Advanced Photon Source was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Kevin Beyer is acknowledged for his help at the 11ID-B beamline at the Advanced Photon Source. This work was supported by the NCI National Facility at the ANU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Paściak.

Additional information

Manuscript submitted May 14, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paściak, M., Heerdegen, A.P., Goossens, D.J. et al. Assessing Local Structure in PbZn1/3Nb2/3O3 Using Diffuse Scattering and Reverse Monte Carlo Refinement. Metall Mater Trans A 44, 87–93 (2013). https://doi.org/10.1007/s11661-012-1475-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1475-z

Keywords

Navigation