Skip to main content
Log in

On X-Ray Diffraction Study of Microstructure of ZnO Thin Nanocrystalline Films with Strong Preferred Grain Orientation

  • Symposium: Neutron and X-Ray Studies of Advanced Materials V
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Textures, stresses, and strains, as well as the overall so-called real structure, are crucial for properties of thin films deposited by different methods and can have both positive and negative effects depending on the film and its application. They were studied by a combination of different X-ray diffraction (XRD) techniques for several ZnO films. The films prepared by pulsed laser deposition (PLD) on MgO and sapphire single-crystalline substrates and amorphous-fused silica showed different kinds of strong preferred orientation and also different stresses that could be estimated only from the analysis of quite narrow, nonzero intensity regions of diffraction spots. XRD line broadening was analyzed by a combination of different asymmetric scans. Fiber (0001) texture and tensile residual stresses were found on fused silica, while domains with local epitaxy and huge compressive stress were detected on MgO substrate, and surprisingly, very strong local epitaxy but not parallel to the (0001) sapphire substrate was observed. No residual stress was detected there. Some methodological aspects of the XRD studies of thin nanocrystalline films with strong preferred orientation are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Notes

  1. This is even more strictly fulfilled for the parallel beam while in the parafocusing geometry instrumental aberrations result in nonzero contributions also from slightly inclined planes.

  2. In this article, 4-index notation is used for hexagonal planes, but 3-index notation for the diffraction lines is used commonly in powder diffraction.

References

  1. A. Jain, P. Sagar, and R.M. Mehra: Solid State Electron., 2006, vol. 50, p. 1420–24.

    Article  CAS  Google Scholar 

  2. D.P. Norton: Mater. Sci. Eng. R, 2004, vol. 43, p. 139–247.

    Article  Google Scholar 

  3. S.J. Pearton, D.P. Norton, K.I.Y.W. Heo, and T. Steiner: Progr. Mater. Sci., 2005, vol. 50, p. 293.

  4. A. Janotti and C.G. Van deWalle: Rep. Prog. Phys., 2009, vol. 72, p. 126501.

  5. K. Ellmer, A. Klein, and B. Rech: Transparent and Conductive Zinc Oxide, Basics and Applications, Springer Series in Materials Science, vol. 104, Springer, New York, 2008.

  6. H. Morkoç and Ü. Özgrür: Zinc Oxide, Fundamentals, Materials and Device Technology, Wiley, New York, NY, 2009.

  7. J.C. Nie, J.Y. Yang, Y. Piao, H.Li, Y. Sun, Q.M. Xue, C.M. Xiong, R.F. Dou, and Q.Y. Tu: Appl. Phys. Lett., 2008, vol. 93, p. 173104.

    Article  Google Scholar 

  8. R. Eason: Pulsed Laser Deposition of Thin Films. Applications. Led Growth of Functional Materials, Wiley, Hoboken, NJ, 2007.

  9. M. Birkholz: Thin Film Analysis by X-Ray Scattering, Wiley, Weinheim, Germany, 2006.

  10. C.V. Thomson and R. Carel: Mater. Sci. Forum, 1996, vols. 204–206, pp. 83–98.

  11. N. Kaiser: Appl. Optic., 2002, vol. 41, pp. 3053–60.

    Article  CAS  Google Scholar 

  12. Z. Cao: Thin Film Growth. Physics, Woodhead Publishing Limited, China, 2001.

  13. M. Ohring: Materials Science of Thin Films, 2nd ed., Academic Press, Atlanta, GA, 2001.

  14. L.B. Freund and S. Suresh: Thin Film Materials: Stress, Defect Formation and Surface Evolution, Cambridge University Press, New York, NY, 2009.

  15. M. Suchea, S. Christoulakis, M. Katharakis, G. Kiriakidis, N. Katsarakis, and E. Koudoumas: Appl.Surf. Sci., 2007, vol. 253, pp. 8141–45.

    Article  CAS  Google Scholar 

  16. J.M. Myoung, W.H. Yoon, D.H. Lee, I. Yun, S.H. Bae, and S.Y. Lee: Jpn. J. Appl. Phys., 2002, vol. 41, pp. 28–31.

    Article  CAS  Google Scholar 

  17. M. Novotny, J. Cizek, R. Kuzel, J. Bulir, J. Lancok, J. Connolly, E. McCarthy, S. Krishnamurthy, and J.P. Mosnier: J. Phys. D, 2012, vol. 45 (22), 225101.

  18. R. Kužel, R. Černý, V. Valvoda, M. Blomberg, and M. Merisalo: Thin Solid Films, 1994, vol. 247, pp. 64–78.

    Article  Google Scholar 

  19. J. Rodriguez-Carvajal: Phys. B, 1993, vol. 192, p. 55.

    Article  CAS  Google Scholar 

  20. A.C. Larson and R.B. Von Dreele: “General Structure Analysis System (GSAS)”, Los Alamos National Laboratory Report LAUR, 1994, pp. 86–748, http://www.ccp14.ac.uk/solution/gsas/.

  21. P. Scardi and M. Leoni: J. Appl. Crystallogr., 2006, vol. 39, pp. 24–31.

    Article  CAS  Google Scholar 

  22. G. Ribárik, T. Ungár, and J. Gubicza: J. Appl. Crystallogr., 2001, vol. 34, pp. 669–76.

    Article  Google Scholar 

  23. L. Lutterotti: Nucl. Instrum. Methods Phys. Res., B, 2010, vol. 268, pp. 334–40.

    Article  CAS  Google Scholar 

  24. L. Lutterotti, D. Chateigner, S. Ferrari, and J. Ricote: Thin Solid Films, 2004, vol. 450, pp. 34–41.

    Article  CAS  Google Scholar 

  25. Z. Matěj, R. Kužel, and L. Nichtová: Powder Diffr., 2010, vol. 25, pp. 125–31.

    Article  Google Scholar 

  26. I.C. Noyan and J.B. Cohen: Residual Stress Measurement by X-Ray Diffraction and Interpretation, Springer, Berlin, Germany, 1987.

  27. M. Klaus, C. Genzel, and H. Holzschuh: Thin Solid Films, 2008, vol. 517, pp. 1172–76.

    Article  CAS  Google Scholar 

  28. H. Behnken and V. Hauk: Mater. Sci. Eng. A, 2001, vol. 300, pp. 41–51.

    Article  Google Scholar 

  29. A. Kumar, U.Welzel, and E.J. Mittemeijer: J. Appl. Crystallogr., 2006, vol. 39, pp. 633–46.

    Article  CAS  Google Scholar 

  30. U. Welzel, J. Ligot, P. Lamparter, A.C. Vermeulen, and E.J. Mittemeijer: J. Appl. Crystallogr., 2005, vol. 38, pp. 1–29.

    Article  Google Scholar 

  31. C.M. Brakman: J. Appl. Crystallogr., 1983, vol. 16, pp. 325–40.

    Article  Google Scholar 

  32. C.M. Brakman: Acta Crystallogr. A, 1987, vol. 43, pp. 270–83.

    Article  Google Scholar 

  33. M. Barral, J.L. Lebrun, J.M. Sprauel, and G. Maeder: Metall. Trans. A, 1987, vol. 18A, pp. 1229–38.

    CAS  Google Scholar 

  34. D. Chateigner: Combined Analysis, Wiley, New York, NY, 2010.

  35. V. Randle and O. Engler: Introduction to Texture Analysis: Macrotexture, Microtexture and Orientation Mapping, CRC Press, Boca Raton, FL, 2009.

  36. C. Dong and J.I. Langford: J. Appl. Crystallogr., 2000, vol. 33, pp. 1127–79.

    Google Scholar 

  37. Inorganic Crystal Structure Database, FIZ Karlsruhe, http://www.fiz-karlsruhe.de/icsd.html.

  38. Powder Diffraction File, PDF-4, International Centre for Diffraction Data http://www.icdd.com.

  39. Pearson’s Crystal Data, Crystal Impact, http://www.crystalimpact.com.

  40. G.C. Gadzhiev: High Temp., 2003, vol. 41, pp. 778–82.

    Article  CAS  Google Scholar 

  41. P. Fons, K. Iwata, S. Niki, A. Yamada, and K. Matsubara: J. Cryst. Growth, 1999, vols. 201–202, pp. 627–632.

    Article  Google Scholar 

  42. Y. Chen, D.M. Bagnall, H.-J. Koh, K.-T. Park, K. Hiraga, Z.-Q. Zhu, and T. Yao: J. Appl. Phys., 1998, vol. 84, p. 3912.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work is supported by the Grant Agency of the Czech Republic under the numbers P108/11/1539 and P108/11/0958.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Kužel.

Additional information

Manuscript submitted April 16, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kužel, R., Čížek, J. & Novotný, M. On X-Ray Diffraction Study of Microstructure of ZnO Thin Nanocrystalline Films with Strong Preferred Grain Orientation. Metall Mater Trans A 44, 45–57 (2013). https://doi.org/10.1007/s11661-012-1432-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1432-x

Keywords

Navigation