Skip to main content
Log in

Circumventing Practical Difficulties in Determination of Threshold Stress Intensity for Stress Corrosion Cracking of Narrow Regions of Welded Structures

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Determination of the threshold stress intensity for stress corrosion cracking (K Iscc) of narrow areas such as weld and heat-affected zone (HAZ) of a weldment is a nontrivial task because of the requirements of large specimens in testing by the traditional techniques and the difficulty of restricting crack propagation to narrow regions in such specimens. This article describes a successful application of the circumferential notch tensile (CNT) technique to determine the K Iscc of narrow regions of the weld and HAZ. Also, the microstructure of the HAZ of the manual metal arc-welded steel was simulated over a relatively small length of specimens and its K Iscc in a hot caustic solution was determined successfully. Intergranular stress corrosion cracking was confirmed with a scanning electron microscope.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

a :

effective crack length (m)

a 0 :

initial crack length (m)

a f :

fatigue crack depth (m)

a m :

machine notch depth (m)

\( \bar{a} \) :

crack length calculated by taking Irwin correction factor into account

a crit :

critical depth of crack (m)

d :

equivalent diameter of final ligament area (m)

D :

specimen outside diameter (m)

F :

geometrical function depending on the fatigue crack depth and diameter of the specimen

F o :

geometrical function depending on the fatigue crack depth, diameter of specimen and equivalent ligament diameter

K I :

stress intensity factor (MPa m1/2)

K Ic :

critical stress intensity factor or fracture toughness (MPa m1/2)

K Iscc :

threshold stress intensity factor for stress corrosion cracking (MPa m1/2)

P :

applied tensile force (N)

r y :

Irwin correction factor (m)

t :

time (h)

t f :

time to failure (h)

α :

geometrical factor depending upon fatigue crack depth and diameter

ε :

eccentricity (m)

σ N :

nominal applied stress (Pa)

σ y :

0.2 pct offset tensile yield stress (Pa)

σ t :

tensile stress applied to the specimen (Pa)

σ b :

bending stress induced by the eccentricity of the ligament (Pa)

References

  1. R.K. Singh Raman and B.C. Muddle: Mater. Sci. Technol., 2003, vol. 19, pp. 1751–54.

    Article  Google Scholar 

  2. R. Sriram and D. Tromans: Corros. Sci., 1985, vol. 25, no. 2, pp. 79–91.

    Article  CAS  Google Scholar 

  3. D. Singbeil and D. Tromans: J. Electrochem. Soc., 1981, vol. 128, no. 10, pp. 2065–70.

    Article  CAS  Google Scholar 

  4. D. Singbeil and D. Tromans: Metall. Trans. A, 1982, vol. 13A, pp. 1091–98.

    CAS  Google Scholar 

  5. B. Arsenault and E. Ghali: Int. J. Press. Ves. Pip., 1991, vol. 45, pp. 23–41.

    Article  CAS  Google Scholar 

  6. J. Albarran, H. Lopez, and L. Martinez: J. Mater. Eng. Perform., 1998, vol. 7, no. 6, pp. 777–83.

    Article  CAS  Google Scholar 

  7. J. Gonzalez, F. Guitierrez-Solana, and J.M. Varona: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 281–90.

    Article  CAS  Google Scholar 

  8. K. Abouswa, F. Elshawesh, and A. Abuargoub: Desalination, 2008, vol. 222, nos. 1–3, pp. 682–88.

    Article  CAS  Google Scholar 

  9. A.J. Sedriks: Corrosion Testing Made Easy: Stress Corrosion Cracking Test Methods, vol. 1, B.C. Syrett, ed., National Association of Corrosion Engineers, Houston, TX, 1990.

  10. R. Rihan, R.K.S. Raman, and R.N. Ibrahim: Mater. Sci. Eng. A, 2005, vol. 407, nos. 1–2, pp. 207–12.

    Google Scholar 

  11. R.N. Ibrahim, R. Rihan, and R.K. Singh Raman: Eng. Fract. Mech., 2008, vol. 75, no. 6, pp. 1623–34.

    Article  Google Scholar 

  12. R.K. Singh Raman, R. Rihan, and R.N. Ibrahim: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 2963–73.

    Article  Google Scholar 

  13. C. Weisman: Fundamentals of Welding, 7th ed., vol. 1, Welding Handbook, C. Weisman, ed., American Welding Society, Miami, FL, 1976, p. 8.

  14. N.T. Nguyen: Thermal Analysis of Welds, Developments in Heat Transfer, B. Sunden, ed., WIT Press, Southampton, U.K., 2004, p. 279.

  15. R.W. Messler, Jr.: Principles of Welding Processes, Physics, Chemistry and Metallurgy, Wiley, New York, NY, 1999.

    Google Scholar 

  16. R.N. Ibrahim and H.L. Stark: Int. J. Fract., 1990, vol. 44, pp. 179–88.

    Google Scholar 

  17. R.N. Ibrahim and H.L. Stark: Eng. Fract. Mech., 1987, vol. 28, no. 4, pp. 455–60.

    Article  Google Scholar 

  18. J.R. Davis: Carbon and Alloy Steels, 1st ed. vol. 4, ASM International, Materials Park. OH, 1996.

  19. B. Arsenault and E. Ghali: Int. J. Press. Ves. Pip., 1991, vol. 45, no. 1, pp. 23–41.

    Article  CAS  Google Scholar 

  20. V.G. Laz’ko, V.E. Laz’ko, and B.M. Ovsyannikov: Strength Mater., 1981, vol. 13, no. 4, pp. 527–32.

    Article  Google Scholar 

  21. S. Kim, S.Y. Kang, S. Lee, S.J. Oh, S.-J. Kwon, O.H. Kim, and J.H. Hong: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 1107–19.

    Article  CAS  Google Scholar 

  22. V.G. Laz’ko, V.E. Laz’ko, and B.M. Ovsynnikov: Problemy Procnosty, 1981, no. 4, pp. 527–32.

  23. H.A. Aglan, Z.Y. Liu, and M. Fateh: J. Mater. Process. Technol., 2004, vol. 151, no. 1–3, pp. 268–74.

    Article  CAS  Google Scholar 

  24. H.A. Aglan and M. Fateh: J. Mech. Mater. Struct., 2007, vol. 2, no. 2, pp. 335–46.

    Article  Google Scholar 

  25. H.A. Aglan and M. Fateh: Int. J. Damage Mechanics, 2006, vol. 15, pp. 393–410.

    Article  CAS  Google Scholar 

  26. R. Kerr, F. Solana, I.M. Bernstein, and A.W. Thompson: Metall. Trans. A, 1987, vol. 22A, pp. 1011–22.

    Google Scholar 

  27. D. Singbeil and D. Tromans: J. Electrochem. Soc., 1982, vol. 129, no. 12, pp. 2669–73.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Australian Research Council (ARC) for their support with a Linkage Project grant (LP0454226). They also thank Prof. Elena Pereloma, University of Wollongong, for her kind help with providing access to the simulation facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Singh Raman.

Additional information

Manuscript submitted April 20, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pal, S., Singh Raman, R.K. & Rihan, R. Circumventing Practical Difficulties in Determination of Threshold Stress Intensity for Stress Corrosion Cracking of Narrow Regions of Welded Structures. Metall Mater Trans A 43, 3202–3214 (2012). https://doi.org/10.1007/s11661-012-1119-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1119-3

Keywords

Navigation