Skip to main content
Log in

Effects of Rolling and Cooling Conditions on Microstructure and Tensile and Charpy Impact Properties of Ultra-Low-Carbon High-Strength Bainitic Steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Six ultra-low-carbon high-strength bainitic steel plates were fabricated by controlling rolling and cooling conditions, and effects of bainitic microstructure on tensile and Charpy impact properties were investigated. The microstructural evolution was more critically affected by start cooling temperature and cooling rate than by finish rolling temperature. Bainitic microstructures such as granular bainites (GBs) and bainitic ferrites (BFs) were well developed as the start cooling temperature decreased or the cooling rate increased. When the steels cooled from 973 K or 873 K (700 °C or 600 °C) were compared under the same cooling rate of 10 K/s (10 °C/s), the steels cooled from 973 K (700 °C) consisted mainly of coarse GBs, while the steels cooled from 873 K (600 °C) contained a considerable amount of BFs having high strength, thereby resulting in the higher strength but the lower ductility and upper shelf energy (USE). When the steels cooled from 673 K (400 °C) at a cooling rate of 10 K/s (10 °C/s) or 0.1 K/s (0.1 °C/s) were compared under the same start cooling temperature of 873 K (600 °C), the fast cooled specimens were composed mainly of coarse GBs or BFs, while the slowly cooled specimens were composed mainly of acicular ferrites (AFs). Since AFs had small effective grain size and contained secondary phases finely distributed at grain boundaries, the slowly cooled specimens had a good combination of strength, ductility, and USE, together with very low energy transition temperature (ETT).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J.Y. Koo, M.J. Luton, N.V. Bangaru, R.A. Petkovic, D.P. Fairchild, C.W. Petersen, H. Asahi, T. Hara, Y. Terada, M. Sugiyama, H. Tamehiro, Y. Komizo, S. Okaguchi, M. Hamada, A. Yamamoto, and I. Takeuchi: Proc. 13th Int. Offshore and Polar Engineering Conf., Honolulu, HI, International Society of Offshore and Polar Engineers, Cupertino, CA, 2003, pp. 10–18.

  2. B.L. Bramfitt and J.G. Speer: Metall. Trans. A, 1990, vol. 21A, pp. 817–29.

    CAS  Google Scholar 

  3. H. Ohtani, S. Okaguchi, Y. Fujishiro, and Y. Ohmori: Metall. Trans. A, 1990, vol. 21A, pp. 877–88.

    CAS  Google Scholar 

  4. T. Araki: Atlas for Bainitic Microstructures, ISIJ, Tokyo, 1992, pp. 1–100.

    Google Scholar 

  5. G. Krauss and S.W. Thompson: ISIJ Int., 1995, vol. 35, pp. 937–45.

    Article  CAS  Google Scholar 

  6. H.K.D.H. Bhadeshia: Mater. Sci. Eng., 2004, vol. A378, pp. 34–39.

    CAS  Google Scholar 

  7. C. Garcia-Mateo, M. Peet, F.G. Caballero, and H.K.D.H. Bhadeshia: Mater. Sci. Technol., 2004, vol. 20, pp. 814–18.

    Article  CAS  Google Scholar 

  8. C.H. Lee, H.K.D.H. Bhadeshia, and H.-C. Lee: Mater. Sci. Eng., 2003, vol. A360, pp. 249–57.

    CAS  Google Scholar 

  9. S. Han, H. Seong, Y. Ahn, C.I. Garcia, A.J. DeArdo, and I. Kim: Met. Mater. Int., 2009, vol. 15, pp. 521–29.

    Article  CAS  Google Scholar 

  10. S.Y. Han, S.Y. Shin, S. Lee, J. Bae, and K. Kim: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 329–40.

    Article  CAS  Google Scholar 

  11. R. Denys: Pipeline Technology Conf., Elsevier, Amsterdam, The Netherlands, 2000, vols. 1–II, pp. 1–116.

  12. U.S. Patent No. 200,701,936,662,007, 2007.

  13. U.G. Gang, J.C. Lee, and W.J. Nam: Met. Mater. Int., 2009, vol. 15. pp. 719–25.

    Article  CAS  Google Scholar 

  14. T. Hara, Y. Shinohara, Y. Terada, and H. Asahi: Proc. 18th Int. Offshore and Polar Engineering Conf., Vancouver, BC, Canada, International Society of Offshore and Polar Engineers, Cupertino, CA, 2008, pp. 73–79.

  15. D.B. Lillig: Proc. 18th Int. Offshore and Polar Engineering Conf., Vancouver, BC, Canada, International Society of Offshore and Polar Engineers, Cupertino, CA, 2008, pp. 1–12.

  16. I. Tamura, H. Sekine, T. Tanaka, and C. Ouchi: Thermomechanical Processing of High-Strength Low-Alloy Steels, Butterworth & Co., Ltd., London, 1988, pp. 80–100.

    Google Scholar 

  17. M. Diaz-Fuentes, A. Iza-Mendia, and I. Gutierrez: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 2505–16.

    Article  CAS  Google Scholar 

  18. ASTM Standard E8m-09: Standard Test Methods for Tension Testing of Metallic Materials, Annual Book of ASTM Standards, ASTM, West Conshohocken, PA, 2009.

  19. ASTM Standard E23-09: Standard Test Method for Notched Bar Impact Testing of Metallic Materials, Annual Book of ASTM Standards, ASTM, West Conshohocken, PA, 2009.

  20. W. Oldfield: Curve Fitting Impact Test Data—a Statistical Procedure, ASTM Standardization News, West Conshohocken, PA, 1975, pp. 24–29.

    Google Scholar 

  21. J.M. Jang, S.J. Kim, N.H. Kang, K.M. Cho, and D.W. Suh: Met. Mater. Int., 2009, vol. 15, pp. 909–16.

    Article  CAS  Google Scholar 

  22. H.W. Swift: J. Mech. Phys. Solids, 1952, vol. 1, pp. 1–16.

    Article  Google Scholar 

  23. J.H. Hollomon: Trans. AIME, 1945, vol. 162, pp. 268–90.

    Google Scholar 

  24. B.-W. Choi, D.-H. Seo, and J.-I. Jang: Met. Mater. Int., 2009, vol. 15, pp. 373–78.

    Article  CAS  Google Scholar 

  25. S.K. Kim, Y.M. Kim, Y.J. Lim, and N.J. Kim: Proc. 15th Conf. on Mechanical Behaviors of Materials, Korea Institute of Metals and Materials, Seoul, 2001, pp. 177–86.

  26. N.J. Kim : Mater. Sci. Eng., 1990, vol. A129, pp. 35–44.

    CAS  Google Scholar 

  27. H.K. Sung, S.Y. Shin, B. Hwang, C.G. Lee, N.J. Kim, and S. Lee: J. Kor. Inst. Met. Mater., 2010, vol. 48, pp. 615–24.

    CAS  Google Scholar 

  28. Y. Ohomori, H. Ohtani, and T. Kunitake: Met. Sci., 1974, vol. 8, pp. 357–66.

    Article  Google Scholar 

  29. F.B. Pickering and T. Gladman: ISI Spec. Rep., 1961, vol. 81, pp. 10–20.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Laboratory Program (Grant No. ROA-2004-000-10361-0(2008)) funded by the Korea Science and Engineering Foundation (KOSEF) and by the Ministry of Knowledge Economy (Grant No. M2007010007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunghak Lee.

Additional information

Manuscript submitted June 7, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sung, H.K., Shin, S.Y., Hwang, B. et al. Effects of Rolling and Cooling Conditions on Microstructure and Tensile and Charpy Impact Properties of Ultra-Low-Carbon High-Strength Bainitic Steels. Metall Mater Trans A 42, 1827–1835 (2011). https://doi.org/10.1007/s11661-010-0590-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-010-0590-y

Keywords

Navigation