Skip to main content
Log in

The Influence of Zirconium on the Low-Cycle Fatigue Response of Ultrafine-Grained Copper

  • Symposium: Ultrafine-Grained Materials: From Basics to Application
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This article reports on the influence of zirconium (Zr) addition (0.17 wt pct) on the cyclic stability of ultrafine-grained (UFG) oxygen-free high-conductivity (OFHC) copper (Cu) of originally high (99.995 wt pct) purity processed via equal-channel angular extrusion (ECAE). Systematic low-cycle fatigue (LCF) tests accompanied by microstructural investigation revealed that a Zr addition substantially affects the cyclic stability of UFG Cu, such that longer fatigue lives, notable cyclic hardening, and higher stress ranges were attained in the LCF regime. This significant improvement of the fatigue properties of OFHC Cu by the addition of Zr is attributed to the Cu-Zr precipitates and impurities, effectively limiting the mobility of the grain boundaries and additional work hardening imposed by the precipitates. In addition, the strain-amplitude and strain-rate dependencies of the cyclic stability of Zr-added UFG Cu were investigated in detail, where the UFG Cu-Zr alloy exhibits an expressively lesser dependency as compared with the pure UFG Cu. The current results offer new insight into the improvement of the cyclic stability of UFG Cu and other UFG materials, and provides a venue for their utility in a broader range of applications demanding enhanced cyclic deformation response and stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. R.Z. Valiev, A.V. Korznikov, and R.R. Mulyukov: Mater. Sci. Eng. A, 1993, vol. 168, pp. 141–48

    Article  Google Scholar 

  2. R.Z. Valiev, I.V. Alexandrov, Y.T. Zhu, and T.C. Lowe: J. Mater. Res., 2002, vol. 17, pp. 5–8

    CAS  Google Scholar 

  3. H.W. Höppel, J. May, and M. Göken: Adv. Eng. Mater., 2004, vol. 6, pp. 219–22

    Article  CAS  Google Scholar 

  4. H.J. Maier, P. Gabor, N. Gupta, I. Karaman, and M. Haouaoui: Int. J. Fatigue, 2006, vol. 28, pp. 243–50

    Article  CAS  Google Scholar 

  5. M. Haouaoui, I. Karaman, and H.J. Maier: Acta Mater., 2006, vol. 54, pp. 5477–88

    Article  CAS  Google Scholar 

  6. I. Karaman, G.G. Yapici, Y.I. Chumlyakov, and I.V. Kireeva: Mater. Sci. Eng. A, 2005, vols. 410–411, pp. 243–47

    Google Scholar 

  7. I. Karaman, A.V. Kulkarni, and Z.P. Luo: Phil. Mag. A, 2005, vol. 85, pp. 1729–45

    Article  CAS  Google Scholar 

  8. C.C. Koch, K.M. Youssef, R.O. Scattergood, and K.L. Murty: Adv. Eng. Mater., 2005, vol. 7, pp. 787–94

    Article  CAS  Google Scholar 

  9. A.P. Zhilyaev, G.V. Nurislamova, B.-K. Kim, M.D. Baró, J.A. Szpunar, and T.G. Langdon: Acta Mater., 2003, vol. 51, pp. 753–65

    Article  CAS  Google Scholar 

  10. Y. Saito, H. Utsunomiya, N. Tsuji, and T. Sakai: Acta Mater., 1999, vol. 47, pp. 579–83

    Article  CAS  Google Scholar 

  11. J. Huang, Y.T. Zhu, D.J. Alexander, X. Liao, T.C. Lowe, and R.J. Asaro: Mater. Sci. Eng. A, 2004, vol. 371, pp. 35–39

    Article  CAS  Google Scholar 

  12. T. Niendorf, D. Canadinc, H.J. Maier, I. Karaman, and S.G. Sutter: Int. J. Mater. Res., 2006, vol. 97, pp. 1328–36

    CAS  Google Scholar 

  13. V.M. Segal: Mater. Sci. Eng., 1995, vol. A197, pp. 157–64

    CAS  Google Scholar 

  14. Y.T. Zhu, and T.C. Lowe: Mater. Sci. Eng. A, 2000, vol. 291, pp. 46–53

    Article  Google Scholar 

  15. R.Z. Valiev, E.V Kozlov, Y.F. Ivanov, J. Lian, A.A. Nazarov, and B. Baudelet: Acta Metall. Mater., 1994, vol. 42, pp. 2467–75

    Article  CAS  Google Scholar 

  16. D.H. Shin, and K.-T. Park: Mater. Sci. Eng. A, 2005, vols. 410–411, pp. 299–302

    Google Scholar 

  17. J.T. Wang, C. Xu, Z.Z. Du, G.Z. Qu, and T.G. Langdon: Mater. Sci. Eng. A, 2005, vols. 410–411, pp. 312–15

    Google Scholar 

  18. Y. Fukuda, K. Oh-ishi, Z. Horita, and T.G. Langdon: Acta Mater., 2002, vol. 50, pp. 1359–68

    Article  CAS  Google Scholar 

  19. German Standard DIN EN 10130: 1999–02

  20. M.A. Meyers, A. Mishra, and D.J. Benson: Progr. Mater. Sci., 2006, vol. 51, pp. 427–556

    Article  CAS  Google Scholar 

  21. H.W. Höppel, M. Kautz, C. Xu, M. Murashkin, T.G. Langdon, R.Z. Valiev, and H. Mughrabi: Int. J. Fatigue, 2006, vol. 28, pp. 1001–10

    Article  CAS  Google Scholar 

  22. A. Vinogradov, Y. Kaneko, K. Kitagawa, S. Hashimoto, V. Stolyarov, and R. Valiev: Scripta Mater., 1997, vol. 36, pp. 1345–51

    Article  CAS  Google Scholar 

  23. S.R. Agnew, and J.R. Weertman: Mater. Sci. Eng., 1998, vol. A244, pp. 145–53

    CAS  Google Scholar 

  24. S. Hashimoto, Y. Kaneko, K. Kitagawa, A. Vinogradov, and R.Z. Valiev: Mater. Sci. Forum, 1999, vols. 312–314, pp. 593–98

    Article  Google Scholar 

  25. S.R. Agnew, A.Y. Vinogradov, S. Hashimoto, and J.R. Weertman: J. Electron. Mater., 1999, vol. 28, pp. 1038–44

    Article  CAS  Google Scholar 

  26. H.W. Höppel, Z.M. Zhou, H. Mughrabi, and R.Z. Valiev: Phil. Mag. A, 2002, vol. 82 (9), pp. 1781–94

    Article  Google Scholar 

  27. A. Vinogradov, and S. Hashimoto: Mater. Trans., 2001, vol. 42, pp. 74–84

    Article  CAS  Google Scholar 

  28. S.D. Wu, Z.G. Wang, C.B. Jiang, G.Y. Li, I.V. Alexandrov, and R.Z. Valiev: Scripta Mater., 2003, vol. 48, pp. 1605–09

    Article  CAS  Google Scholar 

  29. H. Mughrabi, H.W. Höppel, and M. Kautz: Scripta Mater., 2004, vol. 51, pp. 807–12

    Article  CAS  Google Scholar 

  30. P. Lukas, L. Kunz, and M. Svoboda: Mater. Sci. Eng., 2005, vol. A391, pp. 337–41

    CAS  Google Scholar 

  31. S. Suresh: Fatigue of Materials, Cambridge University Press, New York, NY, 1991, pp. 136–40

    Google Scholar 

  32. L. Lu, S.X. Li, and K. Lu: Scripta Mater., 2001, vol. 45, pp. 1163–69

    Article  CAS  Google Scholar 

  33. Y.M. Wang, and E. Ma: Appl. Phys. Lett., 2003, vol. 83, pp. 3165–67

    Article  CAS  Google Scholar 

  34. F. Dalla Torre, E.V. Pereloma, and C.H.J. Davies: Scripta Mater., 2004, vol. 51, pp. 367–71

    Article  CAS  Google Scholar 

  35. Y.M. Wang, and E. Ma: Mater. Sci. Eng., 2004, vols. A375–A377, pp. 46–52

    Google Scholar 

  36. J. May, H.W. Höppel, and M. Göken: Scripta Mater., 2005, vol. 53, pp. 189–94

    Article  CAS  Google Scholar 

  37. H.W. Höppel, M. Brunnbauer, H. Mughrabi, R.Z. Valiev, and A.P. Zhilyaev: Materials Week 2000, Sept. 25–28, 2000, Werkstoffwoche-Partnerschaft, eds., Frankfurt, http://www.materialsweek.org/proceedings, 2001

  38. H. Mughrabi and H.W. Höppel: in Structure and Mechanical Properties of Nanophase Materials—Theory and Computer Simulation vs. Experiment, D. Farkas, H. Kung, M. Mayo, H.V. Swygenhoven, and J. Weertman, eds., MRS, Warrendale, PA, 2001, vol. 634, pp. B2.1.1.–B2.1.12

  39. H. Mughrabi, H.W. Höppel, M. Kautz, and R.Z. Valiev: Z. Metallkd., 2003, vol. 94, 1079–83

    CAS  Google Scholar 

  40. T. Niendorf, D. Canadinc, H.J. Maier, and I. Karaman: Int. J. Fatigue, 2007, in press

  41. O.V. Mishin, V.Y. Gertsman, R.Z. Valiev, and G. Gottstein: Scripta Mater., 1996, vol. 35, pp. 873–78

    Article  CAS  Google Scholar 

  42. Y. Iwahashi, Z. Horita, M. Nemoto, and T.G. Langdon: Acta Mater., 1998, vol. 46, pp. 3317–31

    Article  CAS  Google Scholar 

  43. M. Furukawa, V. Iwahashi, Z. Horita, M. Nemoto, and T.G. Langdon: Mater. Sci. Eng., 1998, vol. A257, pp. 328–32

    CAS  Google Scholar 

  44. W.H. Huang, C.Y. Yu, P.W. Kao, and C.P. Chang: Mater. Sci. Eng., 2004, vol. A366, pp. 221–28

    CAS  Google Scholar 

  45. F. Dalla Torre, R. Lapovok, J. Sandlin, P.F. Thomson, C.H.J. Davies, and E.V. Pereloma: Acta Mater., 2004, vol. 52, pp. 4819–32

    Article  CAS  Google Scholar 

  46. M. Haouaoui, I. Karaman, H.J. Maier, and K.T. Hartwig: Metall. Mater. Trans. A, 2004, vol. A35, pp. 2935–49

    Article  Google Scholar 

  47. Y. Estrin, R.J. Hellmig, S.C. Baik, H.S. Kim, H.G. Brokmeier, and A. Zi: in Ultrafine Grained Materials III, Y.T. Zhu, T.G. Langdon, R.Z. Valiev, S.L. Semiatin, D.H. Shin, C. Lowe, eds., TMS, Warrendale, PA, 2004, pp. 247–53

  48. T. Niendorf, D. Canadinc, H.J. Maier, and I. Karaman: Metall. Mater. Trans. A, 2007, in press

  49. P.B. Prangnell, and J.R Bowen: in Ultrafine Grained Materials II, Y.T Zhu, T.G Langdon, R.S. Mishra, S.L. Semiatin, M.J. Saran, T.C. Lowe, eds., TMS, Warrendale, PA, 2002, pp. 89–98

  50. J. Gubicza, N.H. Nam, L. Balogh, R.J. Hellmig, V.V. Stolyarov, Y. Estrin, and T. Ungár: J. Alloy Compounds, 2004, vol. 378, pp. 248–52

    Article  CAS  Google Scholar 

  51. P.L. Sun, P.W. Kao, and C.P. Chang: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 1359–68

    Article  CAS  Google Scholar 

  52. K. Oh-ishi, Z. Horita, M. Furukawa, M. Nemoto, and T.G. Langdon: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 2011–13

    Article  CAS  Google Scholar 

  53. P. Gabor, H.J. Maier, and I. Karaman: in Proc. Int. Conf. of Fracture: Fracture of Nano and Engineering Materials, E.E. Gdoutos, ed., Springer, Dordrecht, The Netherlands, 2006, pp. 209–10

  54. H.J. Maier, P. Gabor, T. Niendorf, I. Karaman, M. Haouaoui, and S.G. Sutter: Proc. 9th Int. Fatigue Congr., Fatigue 2006, Elsevier, Amsterdam, 2006, on CD

  55. R.P. Singh, A. Lawley, S. Friedman, and Y.V. Murty: Mater. Sci. Eng., 1991, vol. A145, pp. 243–55

    CAS  Google Scholar 

  56. D. Arias, and J.P. Abriata: Bull. Alloy Phase Diagrams, 1990, vol. 11 (5), pp. 452–59

    CAS  Google Scholar 

  57. H. Kimura, A. Inoue, N. Muramatsu, K. Shin, and T. Yamamoto: Mater. Trans., 2006, vol. 47, pp. 1595–98

    Article  CAS  Google Scholar 

  58. X. Molodova: private communication

  59. X. Molodova, A. Khorashadizadeh, G. Gottstein, M. Winning, and R.J. Hellmig: Int. J. Mater. Res., 2007, in press

  60. Y. Iwahashi, Z. Horita, M. Nemoto, and T.G. Langdon: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 2503–10

    Article  CAS  Google Scholar 

  61. P.J. Apps, J.R. Bowen, and P.B. Prangnell: Acta Mater., 2003, vol. 51, pp. 2811–22

    CAS  Google Scholar 

  62. C.E. Feltner, and C. Laird: Acta Metall., 1967, vol. 15, pp. 1633–53

    Article  CAS  Google Scholar 

  63. H. Mughrabi, and R. Wang: in Basic Mechanisms in Fatigue of Metals, P. Lukáš, J. Polák, eds., Elsevier, Amsterdam, 1988, pp. 1–13

  64. F.J. Humphreys, and M. Hatherly: Recrystallization and Related Phenomena, Pergamon, Oxford, United Kingdom, 1995, pp. 132–40

    Google Scholar 

  65. J. Gubicza, N.Q. Chinh, Z. Horita, and T.G. Langdon: Mater. Sci. Eng., 2004, vols. A387–A389, pp. 55–59

    Google Scholar 

  66. S. Lee, A. Utsunomiya, H. Akamatsu, K. Neishi, M. Furukawa, Z. Horita, and T.G. Langdon: Acta Mater., 2002, vol. 50, pp. 553–64

    Article  CAS  Google Scholar 

  67. S. Komura, Z. Horita, M. Nemoto, and T.G. Langdon: J. Mater. Res., 1999, vol. 14, pp. 4044–50

    Article  CAS  Google Scholar 

  68. K. Kapoor, D. Lahiri, I.S. Batra, S.V.R. Rao, and T. Sanyal: Mater. Charact., 2005, vol. 54, pp. 131–40

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support by Deutsche Forschungsgemeinschaft within the Research Unit Program “Mechanische Eigenschaften und Grenzflächen ultrafeinkörniger Werkstoffe.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Canadinc.

Additional information

This article is based on a presentation given in the symposium entitled “Ultrafine-Grained Materials: From Basics to Application,” which occurred September 25–27, 2006 in Kloster Irsee, Germany.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gabor, P., Canadinc, D., Maier, H. et al. The Influence of Zirconium on the Low-Cycle Fatigue Response of Ultrafine-Grained Copper. Metall Mater Trans A 38, 1916–1925 (2007). https://doi.org/10.1007/s11661-007-9230-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-007-9230-6

Keywords

Navigation