Skip to main content
Log in

Ductility and impact resistance of powder-metallurgical molybdenum-rhenium alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Mo-Re alloys containing between 5 and 47.5 wt pct Re were fabricated from Mo and Mo-Re powders by sintering and hot radial forging. The mechanical properties of as-forged, stress-relieved, and recrystallized specimens were examined. Up to a concentration of 41 wt pct Re, the Charpy ductile-to-brittle transition temperature decreased monotonically with increasing rhenium concentration. Consistent with this, bend angles for fracture at T=−100 °C increased monotonically with increasing rhenium concentration. Between 10 and 41 wt pct rhenium, the room-temperature tensile ductility of recrystallized Mo-Re remained nearly constant with values on the order of 35 to 45 pct. This result differs from the low ductility values observed previously by Lundberg (1997) for compositions on either side of Mo-13 wt pct Re.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.A. Geach and J.E. Hughes: Proc. 2nd Plansee Seminar, F. Benesovsky, ed., Reutte, Austria, 1955, pp. 245–53.

    Google Scholar 

  2. R.I. Jaffee, C.T. Sims, and J.J. Harwood: Proc. 3nd Plansee Seminar, F. Benesovsky, ed., Reutte, Austria, 1958, pp. 380–411.

    Google Scholar 

  3. S.R. Agnew and T. Leonhardt: JOM, 2003, Oct., pp. 25–29.

  4. L.B. Lundberg, E.K. Ohriner, S.M. Tuominen, E.P. Whelan, and J.A. Shields, Jr.: in Physical Metallurgy and Technology of Molybdenum and Its Alloys, Proc. Symp. held at AMAX Materials Research Center, Ann Arbor, MI, 1985, K.H. Miska, M. Semchyshen and E.P. Whelan, eds., pp. 71–79.

  5. L.B. Lundberg: in Rhenium and Rhenium Alloys, B.D. Bryskin, ed., TMS, Warrendale, PA, 1997, pp. 373–82.

    Google Scholar 

  6. J.H. Schneibel, Y. Mishima, M. Janousek, J.A. Shields, P.F. Tortorelli, D. Hardwick, D.A. Alven, and D. Furrer: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 481–636.

    Google Scholar 

  7. A.V. Abramyan, N.N. Morgunova, S.A. Golovanenko, and N.I. Kazakova: Metal Science and Heat Treatment, 1988, vol. 30(3–4), pp. 229–34.

    Article  Google Scholar 

  8. J. Wadsworth, T.G. Nieh, and J.J. Stephens: Scripta Metall., 1986, vol. 20, pp. 637–42.

    Article  CAS  Google Scholar 

  9. J. Wadsworth, T.G. Nieh, and J.J. Stephens: Int. Met. Rev., 1988, vol. 33, pp. 131–50.

    CAS  Google Scholar 

  10. A. Kumar and B.L. Eyre: Proc. R. Soc. London A, 1980, vol. 370, pp. 431–58.

    Article  CAS  Google Scholar 

  11. A. Yastrebkov, Yu. Aleynikov, O. Petrova, and Y. Ivakin: in Rhenium and Rhenium Alloys, B.D. Bryskin, ed., TMS, Warrendale, PA, 1997, pp. 767–73.

    Google Scholar 

  12. A.D. Korotaev, A.N. Tyumentsev, V.V. Manako, and Y.P. Pinzhin: in Rhenium and Rhenium Alloys, B.D. Bryskin, ed., TMS, Warrendale, PA, 1997, pp. 671–80.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leichtfried, G., Schneibel, J.H. & Heilmaier, M. Ductility and impact resistance of powder-metallurgical molybdenum-rhenium alloys. Metall Mater Trans A 37, 2955–2961 (2006). https://doi.org/10.1007/s11661-006-0177-9

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-006-0177-9

Keywords

Navigation