Skip to main content
Log in

Microstructural characteristics of Ni-Sb eutectic alloys under substantial undercooling and containerless solidification conditions

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Both Ni-36 wt pct Sb and Ni-52.8 wt pct Sb eutectic alloys were highly undercooled and rapidly solidified with the glass-fluxing method and drop-tube technique. Bulk samples of Ni-36 pct Sb and Ni-52.8 pct Sb eutectic alloys were undercooled by up to 225 K (0.16 T E ) and 218 K (0.16 T E ), respectively, with the glass-fluxing method. A transition from lamellar eutectic to anomalous eutectic was revealed beyond a critical undercooling ΔT 1*, which was complete at an undercooling of ΔT 2*. For Ni-36 pct Sb, ΔT 1*≈60 K and ΔT 2*≈218 K; for Ni-52.8 pct Sb, ΔT 1*≈40 K and ΔT 2*≈139 K. Under a drop-tube containerless solidification condition, the eutectic microstructures of these two eutectic alloys also exhibit such a “lamellar eutectic-anomalous eutectic” morphology transition. Meanwhile, a kind of spherical anomalous eutectic grain was found in a Ni-36 pct Sb eutectic alloy processed by the drop-tube technique, which was ascribed to the good spatial symmetry of the temperature field and concentration field caused by a reduced gravity condition during free fall. During the rapid solidification of a Ni-52.8 pct Sb eutectic alloy, surface nucleation dominates the nucleation event, even when the undercooling is relatively large. Theoretical calculations on the basis of the current eutectic growth and dendritic growth models reveal that γ-Ni5Sb2 dendritic growth displaces eutectic growth at large undercoolings in these two eutectic alloys. The tendency of independent nucleation of the two eutectic phases and their cooperative dendrite growth are responsible for the lamellar eutectic-anomalous eutectic microstructural transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Goetzinger, M. Barth, and D.M. Herlach: Acta Mater., 1998, vol. 46, pp. 1647–55.

    Article  CAS  Google Scholar 

  2. M. Leonhardt, W. Löser, and H.G. Lindenkreuz: Acta Mater., 1999, vol. 47, pp. 2961–68.

    Article  CAS  Google Scholar 

  3. B. Wei, D.M. Herlach, B. Feuerbacher, and F. Sommer: Acta Metall. Mater., 1993, vol. 41, pp. 1801–09.

    Article  CAS  Google Scholar 

  4. S. Walder and P.L. Ryder: Acta Metall. Mater., 1995, vol. 43, pp. 4007–13.

    Article  CAS  Google Scholar 

  5. R. Abbaschian and M.D. Lipschutz: Mater. Sci. Eng., 1997, vols. A226–A228, pp. 13–21.

    Google Scholar 

  6. A.L. Greer: Mater. Sci. Eng., 1994, vol. A178, pp. 113–20.

    Google Scholar 

  7. T.Z. Kattamis and M.C. Flemings: Metall. Trans., 1970, vol. 1, pp. 1449–57.

    CAS  Google Scholar 

  8. T.J. Piccone, Y. Wu, Y. Shiohara, and M.C. Flemings: Metall. Trans. A, 1987, vol. 18A, pp. 925–32.

    CAS  Google Scholar 

  9. S. Walder and P.L. Ryder: J. Appl. Phys., 1993, vol. 74 (10), pp. 6100–05.

    Article  CAS  Google Scholar 

  10. C.D. Cao, W.J. Xie, and B. Wei: Mater. Sci. Eng., 2000, vol. A283, pp. 86–93.

    CAS  Google Scholar 

  11. W.H. Hofmeister, N.D. Evans, R.J. Bayuzick, and M.B. Robinson: Metall. Trans. A, 1986, vol. 17A, pp. 1421–28.

    CAS  Google Scholar 

  12. R. Jansen and P.R. Sahm: Mater. Sci. Eng., 1984, vol. A65, pp. 199–212.

    Google Scholar 

  13. K.A. Jackson and J.D. Hunt: Trans. TMS-AIME, 1966, vol. 236, pp. 1129–35.

    CAS  Google Scholar 

  14. R. Trivedi, P. Magnin, and W. Kurz: Acta Metall., 1987, vol. 35, pp. 971–80.

    Article  CAS  Google Scholar 

  15. W. Kurz and R. Trivedi: Metall. Trans. A, 1991, vol. 22A, pp. 3051–57.

    CAS  Google Scholar 

  16. B. Wei, G.C. Yang, and Y.H. Zhou: Acta Metall. Mater., 1991, vol. 39, pp. 1249–58.

    Article  CAS  Google Scholar 

  17. C. Dong and B. Wei: J. Mater. Sci. Lett., 1996, vol. 15, pp. 970–73.

    Article  CAS  Google Scholar 

  18. T. Lyman: Metals Handbook, vol. 8, Metallography Structures and Phase Diagrams, 8th ed., ASM, Metals Park, Ohio, 1973, p. 325.

    Google Scholar 

  19. N. Wang, C.D. Cao, and B. Wei: Adv. Space Res., 1990, vol. 24 (10), pp. 1257–62.

    Article  Google Scholar 

  20. N. Wang and B. Wei: J. Alloys Compounds, 2000, vol. 302, pp. 274–80.

    Article  CAS  Google Scholar 

  21. J. Lipton, W. Kurz, and R. Trivedi: Acta Metall., 1987, vol. 35, pp. 957–64.

    Article  CAS  Google Scholar 

  22. W.J. Boettinger, S.R. Coriell, and R. Trivedi: Proc. 4th Conf. on Rapid Solidification Processing: Principles and Technologies, R. Mehrabian and P.A. Parrish, eds., Claitors, Baton Rouge, LA, 1987, p. 13.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, X.J., Wei, B. Microstructural characteristics of Ni-Sb eutectic alloys under substantial undercooling and containerless solidification conditions. Metall Mater Trans A 33, 1221–1228 (2002). https://doi.org/10.1007/s11661-002-0223-1

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-002-0223-1

Keywords

Navigation