Skip to main content
Log in

A computationally fast variable importance test for random forests for high-dimensional data

  • Regular Article
  • Published:
Advances in Data Analysis and Classification Aims and scope Submit manuscript

Abstract

Random forests are a commonly used tool for classification and for ranking candidate predictors based on the so-called variable importance measures. These measures attribute scores to the variables reflecting their importance. A drawback of variable importance measures is that there is no natural cutoff that can be used to discriminate between important and non-important variables. Several approaches, for example approaches based on hypothesis testing, were developed for addressing this problem. The existing testing approaches require the repeated computation of random forests. While for low-dimensional settings those approaches might be computationally tractable, for high-dimensional settings typically including thousands of candidate predictors, computing time is enormous. In this article a computationally fast heuristic variable importance test is proposed that is appropriate for high-dimensional data where many variables do not carry any information. The testing approach is based on a modified version of the permutation variable importance, which is inspired by cross-validation procedures. The new approach is tested and compared to the approach of Altmann and colleagues using simulation studies, which are based on real data from high-dimensional binary classification settings. The new approach controls the type I error and has at least comparable power at a substantially smaller computation time in the studies. Thus, it might be used as a computationally fast alternative to existing procedures for high-dimensional data settings where many variables do not carry any information. The new approach is implemented in the R package vita.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alon U, Barkai N, Notterman DA, Gish K, Ybarra S, Mack D, Levine AJ (1999) Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc Natl Acad Sci 96:6745–6750

    Article  Google Scholar 

  • Altmann A, Toloşi L, Sander O, Lengauer T (2010) Permutation importance: a corrected feature importance measure. Bioinformatics 26:1340–1347

    Article  Google Scholar 

  • Boulesteix A-L (2015) Ten simple rules for reducing overoptimistic reporting in methodological computational research. PLoS Comput Biol 4:e1004191

    Article  Google Scholar 

  • Boulesteix AL, Bender A, Bermejo JL, Strobl C (2012) Random forest Gini importance favours SNPs with large minor allele frequency: assessment, sources and recommendations. Brief Bioinform 13:292–304

    Article  Google Scholar 

  • Breiman L (2001) Random forests. Mach Learn 45:5–32

    Article  Google Scholar 

  • Breiman L, C. A (2008) Random forests. http://www.stat.berkeley.edu/users/breiman/RandomForests/cc_home.htm

  • Dettling M, Bühlmann P (2003) Boosting for tumor classification with gene expression data. Bioinformatics 19:1061–1069

    Article  Google Scholar 

  • Díaz-Uriarte R, De Andres SA (2006) Gene selection and classification of microarray data using random forest. BMC Bioinform 7:3

    Article  Google Scholar 

  • Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh ML, Downing JR, Caligiuri MA et al (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286:531–537

    Article  Google Scholar 

  • Gregorutti B, Michel B, Saint-Pierre P (2013) Correlation and variable importance in random forests. arXiv preprint arXiv:1310.5726

  • Hapfelmeier A, Ulm K (2013) A new variable selection approach using random forests. Comput Stat Data Anal 60:50–69

    Article  MathSciNet  Google Scholar 

  • Hothorn T, Hornik K, Zeileis A (2006) Unbiased recursive partitioning: a conditional inference framework. J Comput Graph Stat 15:651–674

    Article  MathSciNet  Google Scholar 

  • Huynh-Thu VA, Saeys Y, Wehenkel L, Geurts P (2012) Statistical interpretation of machine learning-based feature importance scores for biomarker discovery. Bioinformatics 28:1766–1774

    Article  Google Scholar 

  • Ishwaran H (2007) Variable importance in binary regression trees and forests. Electron J Stat 1:519–537

    Article  MathSciNet  Google Scholar 

  • Ishwaran H, Kogalur UB, Blackstone EH, Lauer MS (2008) Random survival forests. Ann Appl Stat 2:841–860

    Article  MathSciNet  Google Scholar 

  • Janitza S, Strobl C, Boulesteix AL (2013) An AUC-based permutation variable importance measure for random forests. BMC Bioinform 14:119

    Article  Google Scholar 

  • Janitza S, Tutz G, Boulesteix A-L (2016) Random forest for ordinal responses: prediction and variable selection. Comput Stat Data Anal 96:57–73

    Article  MathSciNet  Google Scholar 

  • Kim H, Loh W-Y (2001) Classification trees with unbiased multiway splits. J Am Stat Assoc 96:589–604

    Article  MathSciNet  Google Scholar 

  • Liaw A, Wiener M (2002) Classification and regression by randomForest. R News 2:18–22

    Google Scholar 

  • Louppe G, Wehenkel L, Sutera A, Geurts P (2013) Understanding variable importances in forests of randomized trees. In: Burges CJC, Bottou L, Welling M, Ghahramani Z, Weinberger KQ (eds) Advances in neural information processing systems, pp 431–439

  • Molinaro AM, Carriero N, Bjornson R, Hartge P, Rothman N, Chatterjee N (2011) Power of data mining methods to detect genetic associations and interactions. Hum Hered 72:85–97

    Article  Google Scholar 

  • Nicodemus K (2011) Letter to the editor: on the stability and ranking of predictors from random forest variable importance measures. Brief Bioinform 12:369–373

    Article  Google Scholar 

  • Nicodemus K, Malley J (2009) Predictor correlation impacts machine learning algorithms: implications for genomic studies. Bioinformatics 25:1884–1890

    Article  Google Scholar 

  • Pepe M (2004) The statistical evaluation of medical tests for classification and prediction. Oxford University Press, USA

    MATH  Google Scholar 

  • Phipson B, Smyth G (2010) Permutation P-values should never be zero: calculating exact P-values when permutations are randomly drawn. Stat Appl Genet Mol Biol 9:1544–6115

    Article  MathSciNet  Google Scholar 

  • Polak P, Karlić R, Koren A, Thurman R, Sandstrom R, Lawrence MS, Reynolds A, Rynes E, Vlahoviček K, Stamatoyannopoulos JA et al (2015) Cell-of-origin chromatin organization shapes the mutational landscape of cancer. Nature 518:360–364

    Article  Google Scholar 

  • Pomeroy SL, Tamayo P, Gaasenbeek M, Sturla LM, Angelo M, McLaughlin ME, Kim JY, Goumnerova LC, Black PM, Lau C et al (2002) Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 415:436–442

    Article  Google Scholar 

  • Prosperi MC, Marinho S, Simpson A, Custovic A, Buchan IE (2014) Predicting phenotypes of asthma and eczema with machine learning. BMC Med Genomics 7:S7

    Article  Google Scholar 

  • Reif DM, Motsinger-Reif AA, McKinney BA, Rock MT, Crowe J, Moore JH (2009) Integrated analysis of genetic and proteomic data identifies biomarkers associated with adverse events following smallpox vaccination. Genes Immun 10:112–119

    Article  Google Scholar 

  • Schwarz DF, König IR, Ziegler A (2010) On safari to random jungle: a fast implementation of random forests for high-dimensional data. Bioinformatics 26:1752–1758

    Article  Google Scholar 

  • Singh D, Febbo PG, Ross K, Jackson DG, Manola J, Ladd C, Tamayo P, Renshaw AA, D’Amico AV, Richie JP et al (2002) Gene expression correlates of clinical prostate cancer behavior. Cancer Cell 1:203–209

    Article  Google Scholar 

  • Strobl C, Boulesteix A-L, Kneib T, Augustin T, Zeileis A (2008) Conditional variable importance for random forests. BMC Bioinform 9:307

    Article  Google Scholar 

  • Strobl C, Boulesteix AL, Zeileis A, Hothorn T (2007) Bias in random forest variable importance measures: Illustrations, sources and a solution. BMC Bioinform 8:25

  • Strobl C, Malley J, Tutz G (2009) An introduction to recursive partitioning: rationale, application, and characteristics of classification and regression trees, bagging, and random forests. Psychol Methods 14:323–348

    Article  Google Scholar 

  • Strobl C, Zeileis A (2008) Danger: high power!—exploring the statistical properties of a test for random forest variable importance. In: Brito P (ed) Proceedings of the 18th international conference on computational statistics. Porto, Portugal (CD-ROM), Springer, Heidelberg, pp 59–66

    Google Scholar 

  • Szymczak S, Holzinger E, Dasgupta A, Malley JD, Molloy AN, Mills JL, Brody LC, Stambolian D, Bailey-Wilson JE (2016) r2VIM: a new variable selection method for random forests in genome-wide association studies. BioData Min 9:7

    Article  Google Scholar 

  • Tan AC, Gilbert D (2003) Ensemble machine learning on gene expression data for cancer classification. Appl Bioinform 2:S75–S83

    Google Scholar 

  • Tang R, Sinnwell JP, Li J, Rider DN, de Andrade M, Biernacka JM (2009) Identification of genes and haplotypes that predict rheumatoid arthritis using random forests. BMC Proc 3:S68

    Article  Google Scholar 

  • van’t Veer LJ, Dai H, Van De Vijver MJ, He YD, Hart AA, Mao M, Peterse HL, van der Kooy K, Marton MJ, Witteveen AT et al (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415:530–536

    Article  Google Scholar 

  • Wang H, Yang F, Luo Z (2016) An experimental study of the intrinsic stability of random forest variable importance measures. BMC Bioinform 17:60

    Article  Google Scholar 

  • Wang-Sattler R, Yu Z, Herder C, Messias AC, Floegel A, He Y, Heim K, Campillos M, Holzapfel C, Thorand B et al (2012) Novel biomarkers for pre-diabetes identified by metabolomics. Mol Syst Biol 8:615. doi:10.1038/msb.2012.43

  • Wright MN, Ziegler A (2016) ranger: a fast implementation of random forests for high dimensional data in C++ and R. J Stat Softw (in press)

  • Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, Magris M, Hidalgo G, Baldassano RN, Anokhin AP et al (2012) Human gut microbiome viewed across age and geography. Nature 486:222–227

    Article  Google Scholar 

  • Zhu R, Zeng D, Kosorok MR (2015) Reinforcement learning trees. JASA 110:1770–1784

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne-Laure Boulesteix.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 672 KB)

Supplementary material 2 (zip 32 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janitza, S., Celik, E. & Boulesteix, AL. A computationally fast variable importance test for random forests for high-dimensional data. Adv Data Anal Classif 12, 885–915 (2018). https://doi.org/10.1007/s11634-016-0276-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11634-016-0276-4

Keywords

Mathematics Subject Classification

Navigation