Skip to main content
Log in

A tail dependence-based dissimilarity measure for financial time series clustering

  • Regular Article
  • Published:
Advances in Data Analysis and Classification Aims and scope Submit manuscript

Abstract

In this paper we propose a clustering procedure aimed at grouping time series with an association between extremely low values, measured by the lower tail dependence coefficient. Firstly, we estimate the coefficient using an Archimedean copula function. Then, we propose a dissimilarity measure based on tail dependence coefficients and a two-step procedure to be used with clustering algorithms which require that the objects we want to cluster have a geometric interpretation. We show how the results of the clustering applied to financial returns could be used to construct defensive portfolios reducing the effect of a simultaneous financial crisis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alonso AM, Berrendero JR, Hernández A, Justel A (2006) Time series clustering based on forecast densities. Comput Stat Data Anal 51: 762–776

    Article  MATH  Google Scholar 

  • Baig T, Goldfajn I (1999) Financial market contagion in the Asian crisis. IMF Staff Papers 46: 167–195

    Google Scholar 

  • Bartholomew DJ (1959) A test of homogeneity for ordered alternatives. Biometrika 38: 337–344

    Google Scholar 

  • Bohte Z, Cepar D, Kosmelj K (1980) Clustering of time series. In: Barritt MM, Wishart D (eds) COMPSTAT 1980. In: Proceedings in computational statistics. Physica, Wien, pp 587–593

  • Bollerslev T, Chou R, Kroner K (1992) ARCH modeling in finance: a review of the theory and empirical evidence. J Econ 52: 5–59

    MATH  Google Scholar 

  • Breymann W, Dias A, Embrechts P (2003) Dependence structures for multivariate high-frequency data in finance. Quant Fin 3: 1–14

    Article  MathSciNet  Google Scholar 

  • Caiado J, Crato N, Peña D (2006) A periodogram-based metric for time series classification. Comput Stat Data Anal 50: 2668–2684

    Article  MATH  Google Scholar 

  • Cherubini U, Luciano E, Vecchiato W (2004) Copula methods in finance. Wiley, New York

    MATH  Google Scholar 

  • Coombs CH (1964) A theory of data. Wiley, New York

    Google Scholar 

  • Corduas M, Piccolo D (2008) Time series clustering and classification by the autoregressive metrics. Comput Stat Data Anal 52: 1860–1872

    Article  MathSciNet  MATH  Google Scholar 

  • De Luca G, Rivieccio G, Zuccolotto P (2010) Combining random forest and copula functions: a heuristic approach for selecting assets from a financial crisis perspective. Int Syst Acc Fin Man 17: 91–109

    Article  Google Scholar 

  • D’Urso P, Maharaj EA (2009) Autocorrelation-based fuzzy clustering of time series. Fuzzy Sets Syst 160: 3565–3589

    Article  MathSciNet  Google Scholar 

  • Forbes K, Rigobon R (2002) No contagion, only interdependence: measuring stock market co-movements. J Fin 57: 2223–2261

    Article  Google Scholar 

  • Fortin I, Kuzmics C (2002) Tail-dependence in stock-return pairs. Int J Intell Syst Acc Fin Manag 11: 89–107

    Article  Google Scholar 

  • Galeano P, Peña D (2006) Multivariate analysis in vector time series. Resenhas 4: 383–404

    Google Scholar 

  • Joe H (1997) Multivariate models and dependence concepts. Chapman & Hall/CRC, New York

    MATH  Google Scholar 

  • Kakizawa Y, Shumway RH, Taniguchi M (1998) Discrimination and clustering for multivariate time series. J Am Stat Assoc 93: 328–340

    Article  MathSciNet  MATH  Google Scholar 

  • Kaufman L, Rousseaw PJ (1990) Finding groups in data. Wiley, New York

    Book  Google Scholar 

  • Kruskal JB (1964) Multidimensional scaling by optimizing a goodness of fit to a nonmetric hypothesis. Psychometrica 29: 1–27

    Article  MathSciNet  MATH  Google Scholar 

  • Kruskal JB (1964) Nonmetric multidimensional scaling: a numerical method. Psychometrica 29: 115–129

    Article  MathSciNet  MATH  Google Scholar 

  • Masson P (1999) Contagion. J Int M Fin 18: 587–602

    Article  Google Scholar 

  • Nelsen R (2006) An introduction to copulas. Springer, New York

    MATH  Google Scholar 

  • Otranto E (2008) Clustering heteroskedastic time series by model-based procedures. Comput Stat Data Anal 52: 4685–4698

    Article  MathSciNet  MATH  Google Scholar 

  • Pattarin F, Paterlini S, Minerva T (2004) Clustering financial time series: an application to mutual funds style analysis. Comput Stat Data Anal 47: 353–372

    Article  MathSciNet  MATH  Google Scholar 

  • Patton AJ (2006) Modelling asymmetric exchange rate dependence. Int Ec Rev 47: 527–556

    Article  MathSciNet  Google Scholar 

  • Piccolo D (1990) A distance measure for classifying ARMA models. J Time Ser Anal 11: 153–164

    Article  MATH  Google Scholar 

  • Shepard RN (1962) The analysis of proximities: multidimensional scaling with an unknown distance function-I. Psychometrica 27: 125–140

    Article  MathSciNet  Google Scholar 

  • Shepard RN (1962) The analysis of proximities: multidimensional scaling with an unknown distance function-II. Psychometrica 27: 219–246

    Article  MathSciNet  Google Scholar 

  • Taniguchi M, Kakizawa Y (2000) Asymptotic theory of statistical inference for time series. Springer, New York

    Book  MATH  Google Scholar 

  • Vilar JA, Alonso AM, Vilar JM (2010) Non-linear time series clustering based on non-parametric forecast densities. Comput Stat Data Anal 54: 2850–2865

    Article  MathSciNet  Google Scholar 

  • Weng X, Shen J (2008) Classification of multivariate time series using two-dimensional singular value decomposition. Knowl Based Syst 21: 535–539

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni De Luca.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Luca, G., Zuccolotto, P. A tail dependence-based dissimilarity measure for financial time series clustering. Adv Data Anal Classif 5, 323–340 (2011). https://doi.org/10.1007/s11634-011-0098-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11634-011-0098-3

Keywords

Mathematics Subject Classification (2000)

Navigation