Skip to main content
Log in

Computational fluid dynamics (CFD) modeling of heat transfer in a polymeric membrane using finite volume method

  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

The efficiency, robustness and reliability of recent numerical methods for finding solutions to flow problems have given rise to the implementation of computational fluid dynamics (CFD) as a broadly used analysis method for engineering problems like membrane separation system. The CFD modeling in this study observes steady and unsteady (transient) heat flux and temperature profiles in a polymeric (cellulose acetate) membrane. This study is novel due to the implementation of user defined scalar (UDS) diffusion equation by using user-defined functions (UDFs) infinite volume method (FVM). Some details of the FVM used by the solver are carefully discussed when implementing terms in the governing equation and boundary conditions (BC). The contours of temperature due to high-temperature gradient are reported for steady and unsteady problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Versteeg, H. K., An introduction to computational fluid dynamics the finite volume method, 2/E. 1995: Pearson Education India.

    Google Scholar 

  2. Marriott, J., E. Sørensen, and I. Bogle, Detailed mathematical modelling of membrane modules. Computers & Chemical Engineering, 2001. 25(4): p. 693–700.

    Article  Google Scholar 

  3. Wiley, D. E. and D. F. Fletcher, Computational fluid dynamics modelling of flow and permeation for pressure-driven membrane processes. Desalination, 2002. 145(1): p. 183–186.

    Article  Google Scholar 

  4. Huang, L. and M. T. Morrissey, Finite element analysis as a tool for crossflow membrane filter simulation. Journal of membrane science, 1999. 155(1): p. 19–30.

    Article  Google Scholar 

  5. Ghidossi, R., D. Veyret, and P. Moulin, Computational fluid dynamics applied to membranes: State of the art and opportunities. Chemical Engineering and Processing: Process Intensification, 2006. 45(6): p. 437–454.

    Article  Google Scholar 

  6. Bao, L. and G. G. Lipscomb, Well-developed mass transfer in axial flows through randomly packed fiber bundles with constant wall flux. Chemical Engineering Science, 2002. 57(1): p. 125–132.

    Article  Google Scholar 

  7. Lipscomb, G. G. and S. Sonalkar, Sources of Nonideal Flow Distribution and Their Effect on the Performance of Hollow Fiber Gas Separation Modules. Separation & Purification Reviews, 2005. 33(1): p. 41–76.

    Article  Google Scholar 

  8. Takaba, H. and S. -i. Nakao, Computational fluid dynamics study on concentration polarization in H< sub> 2</sub>/CO separation membranes. Journal of membrane science, 2005. 249(1): p. 83–88.

    Article  Google Scholar 

  9. Schwinge, J., D. Wiley, and D. Fletcher, Simulation of the flow around spacer filaments between narrow channel walls. 1. Hydrodynamics. Industrial & engineering chemistry research, 2002. 41(12): p. 2977–2987.

    Article  Google Scholar 

  10. Fletcher, D. and D. Wiley, A computational fluids dynamics study of buoyancy effects in reverse osmosis. Journal of membrane science, 2004. 245(1): p. 175–181.

    Article  Google Scholar 

  11. Cao, Z., D. Wiley, and A. Fane, CFD simulations of net-type turbulence promoters in a narrow channel. Journal of membrane science, 2001. 185(2): p. 157–176.

    Article  Google Scholar 

  12. Geraldes, V. t., V. Semião, and M. N. de Pinho, Flow and mass transfer modelling of nanofiltration. Journal of membrane science, 2001. 191(1): p. 109–128.

    Article  Google Scholar 

  13. Koutsou, C., S. Yiantsios, and A. Karabelas, Numerical simulation of the flow in a plane channel containing a periodic array of cylindrical turbulence promoters. Journal of membrane science, 2004. 231(1): p. 81–90.

    Article  Google Scholar 

  14. Koutsou, C., S. Yiantsios, and A. Karabelas, Direct numerical simulation of flow in spacer-filled channels: Effect of spacer geometrical characteristics. Journal of membrane science, 2007. 291(1): p. 53–69.

    Article  Google Scholar 

  15. Koros, W. and G. Fleming, Membrane-based gas separation. Journal of membrane science, 1993. 83(1): p. 1–80.

    Article  Google Scholar 

  16. McLellan, B., et al., Hydrogen production and utilisation opportunities for Australia. International journal of hydrogen energy, 2005. 30(6): p. 669–679.

    Article  Google Scholar 

  17. Zhang, J., et al., Experimental and simulation studies on concentration polarization in H< sub> 2</sub> enrichment by highly permeable and selective Pd membranes. Journal of membrane science, 2006. 274(1): p. 83–91.

    Article  Google Scholar 

  18. Abdel-Jawad, M., et al., Flowfields on feed and permeate sides of tubular molecular sieving silica (MSS) membranes. Journal of membrane science, 2007. 299(1): p. 229–235.

    Article  MathSciNet  Google Scholar 

  19. Fluent, A., Fluent 6. 3 User Guides: 8. 6 User-Defined Scalar (UDS) Diffusivity. Fluent Inc, 2006: p. 50–58.

    Google Scholar 

  20. Fluent, A., Fluent 6. 3 UDF Manual. Fluent Inc, 2006.

    Google Scholar 

  21. Acetate, P. C. Properties: Cellulose Acetate. 2014 [cited Accessed June 2014]; Available from http://www.azom.com/properties.aspx ArticleID=1461.

    Google Scholar 

  22. Ranges, H. t. Heat transfer coefficient 2014 [cited Accessed June 2014; Available from http://www.engineeringtoolbox.com/convective-heat-transfer-d_430.html.

    Google Scholar 

  23. Fluent, A., Fluent 6. 3 Tutorial Guides. Fluent Inc, 2006.

    Google Scholar 

  24. Arthanareeswaran, G., et al., Synthesis, characterization and thermal studies on cellulose acetate membranes with additive. European polymer journal, 2004. 40(9): p. 2153–2159.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahsan, M., Hussain, A. Computational fluid dynamics (CFD) modeling of heat transfer in a polymeric membrane using finite volume method. J. Therm. Sci. 25, 564–570 (2016). https://doi.org/10.1007/s11630-016-0899-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-016-0899-y

Keywords

Navigation