Skip to main content
Log in

Geomorphologic map of the 1st Mutnaya River, Southeastern Kamchatka, Russia

  • Published:
Journal of Mountain Science Aims and scope Submit manuscript

Abstract

The Kamchatka Peninsula–situated in the Pacific “Ring of Fire”–has 29 active and over 400 extinct volcanoes. Since it is situated in the northeastern extremity of Russia, in subarctic climate, the volcanic landforms are overprinted by the 446 glaciers. This research focuses on the 1stMutnaya catchment which drains the southern slopes of two active volcanoes: Avachinsky and Koryaksky. Those volcanoes are a permanent threat for the cities of Petropavlovsk and Elizovo, which are the 2 of 3 cities of the peninsula. Hence, most of the studies carried out in the area dealt with the natural hazards and only few focus on landscape evolution. Thus, the purpose of this study was to elaborate a cartographic approach which integrates classic geomorphology with state of the art GIS and remote sensing techniques. As result, different landforms and related processes have been analysed and included in the first general geomorphologic map of the 1stMutnaya catchment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramov A, Gruber S, Gilichinsky D (2008) Mountain permafrost on active volcanoes: field data and statistical mapping, Klyuchevskaya Volcano Group, Kamchatka, Russia. Permafrost Periglacial Processes 19:261–277. https://doi.org/10.1002/ppp.622

    Article  Google Scholar 

  • Avdeiko GP, Savelyev DP, Palueva AA, et al. (2007) Evolution of the Kurile-Kamchatkan volcanic arcs and dynamics of the Kamchatka-Aleutian junction. Geophysical Monograph Serie. Am Geophys Union 172:37–55. https://doi.org/10.1029/172GM04

    Google Scholar 

  • Barr ID, Lovell H (2014) A review of topographic controls on moraine distribution. Geomorphology 226:44–64. https://doi.org/10.1016/j.geomorph.2014.07.030

    Article  Google Scholar 

  • Barr ID, Spagnolo M (2013) Palaeoglacial and palaeoclimatic conditions in the(NW)Pacific, as revealed by a morphometric analysis of cirques upon the Kamchatka Peninsula. Geomorphology 192:15–29. https://doi.org/10.1016/j.geomorph.2013.03.011

    Article  Google Scholar 

  • Bazanova LI, Braitseva OA, Melekestsev IV, et al. (2004) Catastrophic eruptions of Avachinsky volcano(Kamchatka)in Holocene: chronology, dynamics, geological effect, environmental impact and long-term forecast(In Russian). Volcanol Seismol 6:15–20.

    Google Scholar 

  • Bellotti F, Branca S, Groppelli G (2010) Geological map of Mount Etna West Rift (Italy). Journal of Maps 6:96–122. https://doi.org/10.4113/jom.2010.1115

    Article  Google Scholar 

  • Belousov A, Walter TR, Troll VR (2005) Large-scale failures on domes and stratocones situated on caldera ring faults: sand-box modeling of natural examples from Kamchatka, Russia. Bull Volcanol 67:457–468. https://doi.org/10.1007/s00445-004-0387-1

    Article  Google Scholar 

  • Bigg GR, Clark CD, Hughes ALC (2008) A last glacial ice sheet on the Pacific Russian coast and catastrophic change arising from coupled ice-volcanic interaction. Earth Planet Sci Lett 265:559–570. https://doi.org/10.1016/j.epsl.2007.10.052

    Article  Google Scholar 

  • Bindeman IN, Leonov VL, Izbekov PE, et al. (2010) Large-volume silicic volcanism in Kamchatka: Ar-Ar and U-Pb ages, isotopic, and geochemical characteristics of major pre-Holocene calderaforming eruptions. J Volcanol Geotherm Res 189:57–80. https://doi.org/0.1016/j.jvolgeores.2009.10.009

    Article  Google Scholar 

  • Bishop MP, James LA, Walsh SJ, et al. (2012) Geospatial technologies and digital geomorphological mapping: Concepts, issues and research. Geomorphology 137:5–26. https://doi.org/10.1016/j.geomorph.2011.06.027

    Article  Google Scholar 

  • Braitseva OA, Melekestsev IV (1991) Eruptive history of Karymsky volcano, Kamchatka, USSR, based on tephra stratigraphy and 14C dating. Bull Volcanol 53:195–206. https://doi.org/10.1007/BF00301230

    Article  Google Scholar 

  • Braitseva OA, Sulerzhitsky LD, Ponomareva VV, Melekestsev IV (1997) Geochronology of the greatest Holocene explosive eruptions in Kamchatka and their imprint on the Greenland glacier shield. Trans Russ Acad Sci Earth Sci Sect 352(1):138–140.

    Google Scholar 

  • Chalov S, Belozerova E, Shkolny D, et al. (2013) Sediment transfer in the extreme volcanic environment (case study of the Kamchatka peninsula). In: Fukuoka S et al. (eds.) Advances in River Sediment Research. Taylor & Francis Group London, United Kingdom, p 73. https://doi.org/10.1201/b15374

    Google Scholar 

  • Conrad O, Bechtel B, Bock M, et al. (2015) System for Automated Geoscientific Analyses(SAGA)v. 2.1.4. Geosci Model Dev 8:1991–2007. https://doi.org/10.5194/gmd-8-1991-2015

    Article  Google Scholar 

  • de Pablo Hernández MÁ, Carrillo JDC (2012) Geomorphological map of the lower NWflank of the Hecates Tholus volcano, Mars (scale 1:100,000). Journal of Maps 8:208–214. https://doi.org/10.1080/17445647.2012.703902

    Article  Google Scholar 

  • Droznin VA, Dubrovskaya IK, Kiryukhin AV, et al. (2004) Avachinsky volcano geothermal reservoir based on fumaroles activity and seismological network data. (Available online: http://kiska.giseis.alaska.edu/kasp/kasp04/abstracts/droznin.pdf accessed on 2016-10-06)

    Google Scholar 

  • Ermakova AS (2008) Correspondence of longitudinal profiles and vertical riverbed deformations with the riverbed types on the Kamchatka peninsula(In Russian). Geomorphol RAS 4:65–74.

    Google Scholar 

  • Favalli M, Fornaciai A, Pareschi MT (2009) LIDAR strip adjustment: Application to volcanic areas. Geomorphology 111:123–135. https://doi.org/10.1016/j.geomorph.2009.04.010

    Article  Google Scholar 

  • Fedotov SA, Sugrobov VM, Utkin IS, Utkina LI (2007) On the possibility of using heat stored in the magma chamber of the Avachinsky volcano and the surrounding rock for heat and power supply. Journal of Volcanology and Seismology 1:28–41. https://doi.org/10.1134/S0742046307010022

    Article  Google Scholar 

  • Fedotov SA, Zolotarskaya SB, Maguskin MA, et al. (1988) The study of deformations of the earth’s surface on the Kamchatka Peninsula: repeated geodetic measurements. J Geodyn 10:175–188. https://doi.org/10.1016/0264-3707(88)90024-5

    Article  Google Scholar 

  • Flügel WA, Märker M, Moretti S, et al. (2003) Integrating geographical information systems, remote sensing, ground truthing and modelling approaches for regional erosion classification of semi-arid catchments in South Africa. Hydrol Process 17:929–942. https://doi.org/10.1002/hyp.1171

    Article  Google Scholar 

  • Freitag R, Gaedicke C, Baranov B, Tsukanov N (2001) Collisional processes at the junction of the Aleutian-Kamchatka arcs: new evidence from fission track analysis and field observations. Terra Nova 13:433–442. https://doi.org/10.1046/j.1365-3121.2001.00375.x

    Article  Google Scholar 

  • Gilichinsky M, Melnikov D, Melekestsev I, et al. (2010) Morphometric measurements of cinder cones from digital elevation models of Tolbachik volcanic field, central Kamchatka. Can J Remote Sens 36:287–300. https://doi.org/10.5589/m10-049

    Article  Google Scholar 

  • Glasser N, Jansson K (2008) The Glacial Map of southern South America. Journal of Maps 4:175–196. https://doi.org/10.4113/jom.2008.1020

    Article  Google Scholar 

  • Golub NV (2002) Moraine complex of Kropotkina glacier as a record of glacier fluctuations in 17th-20th centuries(in Russian). Data Glaciol Stud 93:178–181.

    Google Scholar 

  • Grishin SY, Moral R, Krestov PV, Verkholat VP (1996) Succession following the catastrophic eruption of Ksudach volcano(Kamchatka, 1907). Vegetatio 127:129–153. https://doi.org/10.1007/BF00044637

    Article  Google Scholar 

  • Gustavsson M, Kolstrup E, Seijmonsbergen AC (2006) A new symbol-and-GIS based detailed geomorphological mapping system: Renewal of a scientific discipline for understanding landscape development. Geomorphology 77:90–111. https://doi.org/10.1016/j.geomorph.2006.01.026

    Article  Google Scholar 

  • Hengl T, Reuter HI (2009) Geomorphometry Concepts, Software, Applications. Developments in Soil Science, Elsevier, Amsterdam. 33:87–120.

    Article  Google Scholar 

  • Hourigan JK, Solov’ev AV, Ledneva GV, et al. (2004) Timing of syenite intrusions on the eastern slope of the Sredinnyi Range, Kamchatka: Rate of accretionary structure exhumation. Geochemistry Int 42:97–105.

    Google Scholar 

  • Inbar M, Gilichinsky M, Melekestsev I, et al. (2011) Morphometric and morphological development of Holocene cinder cones: a field and remote sensing study in the Tolbachik volcanic field, Kamchatka. J Volcanol Geotherm Res 201:301–311. https://doi.org/10.1016/j.jvolgeores.2010.07.013

    Article  Google Scholar 

  • Ivanov VV (2010) Activation of Koryaksky Volcano(Kamchatka)in late 2008 - early 2009: Evaluation of Heat and Aqueous Fluid Removal, Conceptual Model of Magma Ascent and Eruption Development Forecast. Proc Conf Dedic to Day Volcanol March Petropavlovsk Kamchatsky Inst Branch Russ Acad Sci 2439 2009:30–31.

    Google Scholar 

  • Kervyn M, Ernst GGJ, Carracedo JC, Jacobs P (2012) Geomorphometric variability of “monogenetic” volcanic cones: Evidence from Mauna Kea, Lanzarote and experimental cones. Geomorphology 136:59–75.https://doi.org/10.1016/j.geomorph. 2011.04.009

    Article  Google Scholar 

  • Kiryukhin A, Manukhin Y, Fedotov S, et al. (2015) Geofluids of Avachinsky-Koryaksky Volcanogenic Basin, Kamchatka, Russia. Proceedings World Geothermal Congress Melbourne, Australia 2015:1–11.

    Google Scholar 

  • Kobayash D, Muravyev YD, Kodama Y, Shirai T (1996) An outline of Russo - Japanese joint glacier research in Kamchatka. Bulletin of Glacier Research 15:19–26.

    Google Scholar 

  • Kuksina LV, Chalov SR (2012) The suspended sediment discharge of the rivers running along territories of contemporary volcanism in Kamchatka. Geogr Nat Resour 33:67–73. https://doi.org/10.1134/S187537281

    Article  Google Scholar 

  • Kyle PR, Ponomareva VV, Schluep RR (2011) Geochemical characterization of marker tephra layers from major Holocene eruptions, Kamchatka Peninsula, Russia. International Geology Review. 53:1059–1097. https://doi.org/10.1080/00206810903 442162

    Article  Google Scholar 

  • Leonov VL, Rogozin AN (2010) Geologic Development of the Karymshina Caldera, Kamchatka, Russia, with Special Reference to Its Hydrothermal Systems. Proc World Geotherm Congr Bali Indones 1-7. (Available online: https://www.geothermal-energy.org/pdf/IGAstandard/WGC/2010/1238.pdf, accessed on 2016-10-14)

    Google Scholar 

  • Marenina TU, Sirin AN, Timerbaeva KM (1962) Koryakskii volcano on Kamchatka Peninsula. Proc. Lab. Volcanology 22:67–130.

    Google Scholar 

  • Märker M, Angeli L, Bottai L, et al. (2008) Assessment of land degradation susceptibility by scenario analysis: A case study in Southern Tuscany, Italy. Geomorphology 93:120–129. https://doi.org/10.1016/j.geomorph.2006.12.020

    Article  Google Scholar 

  • Matsumoto T, Kodama Y, Shiraiwa T, et al. (1997) Meteorological observation by Automatic Weather Stations(AWS)in Alpine regions of Kamchatka, Russia. Low Temperature Science, data report 53-68 56:1996–1997. (Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.611.4979&rep=rep1&type=pdf accessed on 2016-10-14)

    Google Scholar 

  • Mierlă M, Romanescu G, Nichersu I, et al. (2015) Hydrological risk map for the Danube Delta-a case study of floods within the fluvial delta. Journal of Selected Topics in Applied Earth Obersvation and Remote Sensing 8:98–104. https://doi.org/10.1109/JSTARS.2014.2347352

    Article  Google Scholar 

  • Mouri G, Ros FC, Chalov S (2014) Characteristics of suspended sediment and river discharge during the beginning of snowmelt in volcanically active mountainous environments. Geomorphology 213:266–276. https://doi.org/10.1016/j.geomorph.2014.02.001

    Article  Google Scholar 

  • Nave R, Isaia R, Vilardo G, Barclay J (2010) Re-assessing volcanic hazard maps for improving volcanic risk communication: application to Stromboli Island, Italy. Journal of Maps 6:260–269. https://doi.org/10.4113/jom.2010.1061

    Article  Google Scholar 

  • Neal CA, Herrick J, Girina OA, et al. (2014) 2010 Volcanic Activity in Alaska, Kamchatka, and the Kurile Islands: Summary of Events and Response of the Alaska Volcano Observatory. Sci U.S. Geological Survey Scientific Investigations Report 2014–5034. http://dx.doi.org/10.3133/sir20145034

    Google Scholar 

  • Nürnberg D, Dethleff D, Tiedemann R, et al. (2011) Okhotsk Sea ice coverage and Kamchatka glaciation over the last 350 ka — Evidence from ice-rafted debris and planktonic δ18O. Palaeogeogr Palaeoclimatol Palaeoecol 310:191–205. https://doi.org/10.1016/j.palaeo.2011.07.011

    Article  Google Scholar 

  • Parechi MT, Cavarra L, Favalli M, et al. (2000) GIS and Volcanic Risk Management. Natural Hazards 21:361–379. https://doi.org/10.1023/A:1008016304797

    Article  Google Scholar 

  • Pedoja K, Bourgeois J, Pinegina T (2004) Neotectonics near the NWcorner of the Pacific Plate: terraces on Ozernoi and Kamchatskiy Peninsulas, Kamchatka, Russia (Abstract). Biennial Workshop on Subduction Processes Emphasizing the Japan-Kurile Kamchatka-Aleutian Arcs. Petropavlovsk Kamchatsky August 21-27. (Available online: http://kiska.giseis.alaska.edu/kasp/kasp04/abstracts/pedoja.pdf, accessed on 2016-10-30)

    Google Scholar 

  • Pedoja K, Bourgeois J, Pinegina T, Higman B (2006) Does Kamchatka belong to North America? An extruding Okhotsk block suggested by coastal neotectonics of the Ozernoi Peninsula, Kamchatka, Russia. Geology 34:353–356. https://doi.org/10.1130/G22062.1

    Article  Google Scholar 

  • Pinegina TK, Kozhurinb AI, Ponomareva VV (2014) Active Tectonics and Geomorphology of the Kamchatsky Bay Coast in Kamchatka. Russ J Pacific Geol 8:65–76. https://doi.org/10.1134/S181971401

    Article  Google Scholar 

  • Planchon O, Darboux F (2001) A fast, simple and versatile algorithm to fill the depressions of digital elevation models. Catena 46:159–176. https://doi.org/10.1016/S0341-8162(01)00164-3

    Article  Google Scholar 

  • Ponomareva VV, Pevzner MM, Melekestsev IV (1998) Large debris avalanches and associated eruptive in the Holocene eruptive history of Shiveluch volcano, Kamchatka, Russia. Bulletin of Volcanology 59:490–505. https://doi.org/10.1007/s004450050

    Article  Google Scholar 

  • Ponomareva VV, Melekestsev IV, Dirksen OV (2006) Sector collapses and large landslides on Late Pleistocene-Holocene volcanoes in Kamchatka, Russia. Journal of Volcanology and Geothermal Research 158:117–138. https://doi.org/10.1016/j.jvolgeores.2006.04.016

    Article  Google Scholar 

  • Revuelto J, Lopez-Moreno JI, Azorin-Molina C, et al. (2014) Mapping the annual evolution of snow depth in a small catchment in the Pyrennes using the long-range terrestrial laser scanning. Journal of Maps 10:379–393. https://doi.org/10.1080/17445647.2013.869268

    Article  Google Scholar 

  • Saint-Marc C, Davoine PA, Villanova-Oliver M (2014) Methods for mapping volcanic events overlaid across time. Journal of Maps 10:249–256. https://doi.org/10.1080/17445647.2014.888376

    Article  Google Scholar 

  • Savoskul OS, Zech W (1997) Holocene glacier advances in the Topolovaya valley, Bystrinskiy Range, Kamchatka, Russia, dated by tephrochronology and lichenometry. Arctic Alpine Research 29:143–155. https://doi.org/10.2307/1552041

    Article  Google Scholar 

  • Savoskul OS (1999) Holocene Glacier Advances in the Headwaters of Sredniaya Avacha, Kamchatka, Russia. Quaternary Research 52:14–26. https://doi.org/10.1006/qres.1999.2051

    Article  Google Scholar 

  • Sheimovich VS, Karpenko MI, (1996) The K-Ar Age of Volcanism in southern Kamchatka. Journal of Volcanology and Seismology 2: 86–90.

    Google Scholar 

  • Solomina ON, Muravyev YD, Bazanova LI (1995) "Little Ice Age" glaciers in Kamchatka, northeastern Russia. Annals of Glaciology 21:240–244. https://doi.org/10.3189/S026030550 0015883

    Article  Google Scholar 

  • Solomina O (1999) Mountain glaciation of northern Eurasia in the Holocene. Nauchniy Mir Publisher, Moscow. p 263. (In Russian)

    Google Scholar 

  • Solomina O, Calkin PE (2003) Lichenometry as Applied to Moraines in Alaska, U.S.A. and Kamchatka, Russia. Arctic, Antarct Alp Res 35:129–143. https://doi.org/10.1657/1523-0430(2003)035[0129:LAATMI]2.0.CO;2

    Article  Google Scholar 

  • Solomina O, Wiles G, Shiraiwa T, D’Arrigo R (2007) Multiproxy records of climate variability for Kamchatka for the past 400 years. Climate of the Past 3:119–128. https://doi.org/10.5194/cp-3-119-2007

    Article  Google Scholar 

  • Sone T, Jamagata K, Kazakov N (2003) Mountain Permafrost on the North Slope of Mt. Ushkovsky, Central Kamchatka, Russia. Z Geomorph N F 130:167–177.

    Google Scholar 

  • Stoiculescu RC, Huzui AE, Gavrilidis A, et al. (2014) What is the spatial link between the Roman civilisation and cultural landscape in Romania? Journal of Maps 10:297–307. https://doi.org/10.1080/17445647.2013.879267

    Article  Google Scholar 

  • Stumpf A, Malet JP, Allemand P, et al. (2015) Ground-based multi-view photogrammetry for the monitoring of landslide deformation and erosion. Geomorphology 231:130–145. https://doi.org/10.1016/j.geomorph.2014.10.039

    Article  Google Scholar 

  • Taran YA, Connor CB, Shapar VN, et al. (1997) Fumarolic activity of Avachinsky and Koryaksky volcanoes, Kamchatka, from 1993 to 1994. Bulletin of Volcanology 58:441–448. https://doi.org/10.1007/s004450050

    Article  Google Scholar 

  • Thouret JC (1999) Volcanic geomorphology-an overview. Earth-Science Reviews 47:95–131. https://doi.org/10.1016/S0012-8252(99)00014-8

    Article  Google Scholar 

  • Traglia F, Morelli S, Casagli N, Monroy VHG (2014) Semiautomatic delimitation of volcanic edifice boundaries: Validation and application to the cinder cones of the Tancitaro-Nueva Italia region(Michoacán-Guanajuato Volcanic Field, Mexico). Geomorphology 219:152–160. https://doi.org/10.1016/j.geomorph.2014.05.002

    Article  Google Scholar 

  • Tripodo A, Casella S, Pino P, et al. (2012) Geomorphological map of the Lipari volcanic island (Aeolian Archipelago-Italy). J Maps 8:107–112. https://doi.org/10.1080/17445647.2012. 668 770

    Article  Google Scholar 

  • Ventura G, Vilardo G, Bronzino G, et al. (2005) Geomorphological map of the Somma-Vesuvius volcanic complex(Italy). Journal of Maps 1:30–37. https://doi.org/10.4113/jom.2005.8

    Article  Google Scholar 

  • Vinogradov VN, Muraviev YD (1992) Kozel’sky Glacier. Leningrad, Gidrometeoizdat 120.

    Google Scholar 

  • Vorpahl P, Elsenbeer H, Märker M, et al. (2012) How can statistical models help to determine driving factors of landslides?. Ecological Modelling 239:27–39. https://doi.org/10.1016/j.ecolmodel.2011.12.007

    Article  Google Scholar 

  • Waltham T (2001) A guide to the volcanoes of southern Kamchatka, Russia. Proceedings of the Geologists’s Association 122:67–78.

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by a Marie Curie International Research Staff Exchange Scheme Fellowship within the 7th European Community Framework Programme (FLUMEN, Project number 318969, FP7-PEOPLE-2012-IRSES). The Russian group was also co-funded by Russian Scientific Foundation project nr. 14-17-00155.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Maerker.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romanescu, G., Chalov, S., Stoleriu, C.C. et al. Geomorphologic map of the 1st Mutnaya River, Southeastern Kamchatka, Russia. J. Mt. Sci. 14, 2373–2390 (2017). https://doi.org/10.1007/s11629-017-4358-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11629-017-4358-3

Keywords

Navigation