Skip to main content
Log in

Cytogenetic analyses of a murine carcinoma cell line and six metastatic derivatives with different degrees of radioresistability

  • Genetics
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

We reported that a murine carcinoma (DEN3) and its six pulmonary metastases (M2, M4C, M4D, M4E, M4F, and M6) exhibited different degrees of radioresistability (In Vitro Cell. Dev. Biol. 26:222–228; 1990). While the M2, M4C, M4E, and M4F cultured cells survived up to 2.5 Gy, the cells of DEN3 and M6 tolerated up to 5.0 Gy, and the M4D cells could withstand up to 10.0 Gy of X-irradiation. In the present investigation, the cytogenetic features of these cell lines were examined: (a) to determine the degree of cytogenetic heterogeneity among these cell lines, and (b) to investigate whether any association between the cytogenetic anomaly and the degree of radioresistability could be established. Heterogeneous cytogenetic aberrations were detected in all of the above lines. Karyotype analysis of the M4D and M6 cell lines displayed both numerical and structural abnormalities. The gain and loss of chromosomal copies were observed. Structural aberrations, such as translocation and deletion appeared in both cell lines. However, correlation between the cytogenetic abnormality and the degree of radioresistability was not demonstrated except for a dramatic reduction in one or more copies of the X-chromosome that occurred in 86% and 93% of the M6 and M4D cells, respectively. The results suggest heterogeneous cytogenetic aberrations among these cell lines and a possible association between the loss of X-chromosome and radioresistability of these tumor cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bell, C.; Frost, P.; Kerbel, R. S. Cytogenetic heterogenity of genetically marked and metastatically competent “Dominant” tumor cell clones. Cancer Genet. Cytogenet. 54:153–161; 1991.

    Article  PubMed  CAS  Google Scholar 

  2. Brison, O. Gene amplification and tumor progression. Biochim. Biophys. Acta 1155:25–41; 1993.

    PubMed  CAS  Google Scholar 

  3. Calabresi, P.; Dexter, D. L. Clinical applications of cancer cell heterogeneity. In: Owens, A. H.; Coffey, D. S.; Baylin, S. B., eds. Tumor cell heterogeneity: origins and implications. New York: Academic Press; 1982:181–201.

    Google Scholar 

  4. Chakrabarti, S.; Granzow, C. Frequent involvement of Ig heavy chain carrier chromosome 12 in translocations in an Ehrlich-derived mouse tumor line. Neoplasma 39:237–239; 1992.

    PubMed  CAS  Google Scholar 

  5. Cheng, K. C.; Loeb, L. A. Genomic instability and tumor progression: mechanistic considerations. Adv. Cancer Res. 60:121–156; 1993.

    PubMed  CAS  Google Scholar 

  6. Committee on standardized genetic nomenclature for mice. Standard Karyotype of the mouse, Mus musculus. J. Hered. 63:69–72; 1972.

    Google Scholar 

  7. Cowell, J. K. Chromosome abnormalities associated with salivary gland epithelial cell lines transformed in vitro and in vivo with evidence of a role for genetic imbalance in transformation. Cancer Res. 41:1508–1517; 1981.

    PubMed  CAS  Google Scholar 

  8. Cowell, J. K. A photographic representation of the variability in the G-banded structure of the chromosomes in the mouse karyotype. Chromosoma 89:294–320; 1984.

    Article  PubMed  CAS  Google Scholar 

  9. Dexter, D. L.; Kowalski, H. M.; Blazar, B. A., et al. Heterogeneity of tumor cells from a single mouse mammary tumor. Cancer Res. 38:3174–3181; 1978.

    PubMed  CAS  Google Scholar 

  10. Hahn, P. J. Molecular biology of double minute chromosomes. BioEssays 15:477–484; 1993.

    Article  PubMed  CAS  Google Scholar 

  11. Hill, H.; Hill, J. G.; Miller, C. F., et al. Radiation and melanoma: response of B16 mouse tumor cells and clonal lines to in vitro irradiation. Radiat. Res. 80:259–276; 1979.

    Article  PubMed  CAS  Google Scholar 

  12. Hu, F.; Wang, R. Y.; Hsu, T. C. Clonal origin of metastasis in B16 murine melanoma: a cytogenetic study. JNCI 78:155–163; 1987.

    PubMed  CAS  Google Scholar 

  13. Jamasbi, R. J.; Perkins, E. H. Biological heterogeneity and radiation sensitivity of in vitro propagated lung metastatic lines originated from a transplantable squamous cell carcinoma of BALB/c mouse. In Vitro Cell. Dev. Biol. 26:222–228; 1990.

    Article  PubMed  CAS  Google Scholar 

  14. Jamasbi, R. J. Generation of immunoprotection against squamous cell carcinomas by in vitro cultivation and a possible mechanism of action. Ohio J. Sci. 94:14–23; 1994.

    CAS  Google Scholar 

  15. Justice, M. J.; Siracuse, L. D.; Gilbert, D. J., et al. A genetic linkage map of mouse chromosome 10: localization of eighteen molecular markers using a single interspecific backcross. Genetics 125:855–866; 1990.

    PubMed  CAS  Google Scholar 

  16. Klein, G.; Klein, E. Evolution of tumors and the impact of molecular oncology. Nature 315:190–195; 1985.

    Article  PubMed  CAS  Google Scholar 

  17. Kopelovich, L.; Chapman, T. An imbalance in sex chromosomes alters cell survival of human skin fibroblasts exposed to ionizing radiation in vitro. Cancer Genet. Cytogenet. 20:115–120; 1986.

    Article  PubMed  CAS  Google Scholar 

  18. Leith, J. T.; Dexter, D. L.; DeWyngaert, J. K., et al. Differential response to x-irradiation of sub-populations of two heterogeneous carcinomas in vitro. Cancer Res. 42:2556–2561; 1982.

    PubMed  CAS  Google Scholar 

  19. Levin, N. A.; Brzoska, P.; Gupta, N., et al. Genetic alterations that correlate with radioresistance in small cell lung carcinoma. Am. Assoc. Cancer Res. Proc. 35:680–681; 1994.

    Google Scholar 

  20. Liotta, L. A.; Stetler-Stevenson, W. G. Principal of molecular cell biology of cancer: cancer metastasis. In: De Vita, V. T.; Hellman, S.; Rosenberg, S. A., eds. Cancer: principal and practice of oncology. 3rd ed. Philadelphia: J. B. Lippincott Co.; 1989:98–115.

    Google Scholar 

  21. Little, J. B. Role of P53 in radioresistance associated with expression of SV40 T-antigen. Am. Assoc. Cancer Res. Proc. 35:682; 1994.

    Google Scholar 

  22. Marx, J. L. Tumors: a mixed bag of cells. Science 215:275–277; 1982.

    Article  PubMed  CAS  Google Scholar 

  23. Nesbitt, M. N.; Francke, U. A system of nomenclature for band patterns of mouse chromosomes. Chromosoma 41:145–158; 1973.

    Article  PubMed  CAS  Google Scholar 

  24. Nguyen, H. N.; Sevin, B.-U.; Averette, H. E., et al. Evidence of tumor heterogeneity in cervical cancer and lymph node metastases as determined by flow cytometry. Cancer 71:2543–2550; 1993.

    Article  PubMed  CAS  Google Scholar 

  25. Nowell, P. C. The clonal evolution of tumor cell populations. Science 194:23–28; 1976.

    Article  PubMed  CAS  Google Scholar 

  26. Otto, E.; McCord, S.; Tisty, T. D. Increased incidence of CAD gene amplification in tumorigenic rat lines as indicator of genomic instability of neoplastic cells. J. Biol. Chem. 264:3390–3396; 1989.

    PubMed  CAS  Google Scholar 

  27. Perkins, E. H.; Clapp, N. K.; Cachiro, L. H. A positive correlation between declining immune competence and early mortality associated with Diethylnitrosamine carcinogenesis in aging mice. Mech. Ageing Dev. 10:225–232; 1979.

    Article  PubMed  CAS  Google Scholar 

  28. Pierce, J. H.; Difiore, P. P.; Aaronson, S. A., et al. Neoplastic transformation of mast cells by Abelson-MuLV: abrogation of IL-3 dependence by a non-autocrine mechanism. Cell 41:685–693; 1985.

    Article  PubMed  CAS  Google Scholar 

  29. Potter, M.; Wiener, F. Plasmacytomagenesis in mice: model for neoplastic development upon chromosomal translocation. Carcinogenesis (Lond.) 12:1681–1697; 1992.

    Article  Google Scholar 

  30. Runowicz, C. D.; Nuchtern, L. M.; Braunstein, J. D., et al. Heterogeneity in hormone receptor status in primary and metastatic endometrial cancer. Gynecol. Oncol. 38:437–441; 1990.

    Article  PubMed  CAS  Google Scholar 

  31. Talmadge, J. E.; Wolman, S. R.; Fidler, I. J. Evidence for the clonal origin of spontaneous metastases. Science 217:361–363; 1982.

    Article  PubMed  CAS  Google Scholar 

  32. Talmadge, J. E.; Benedict, K.; Madsen, J., et al. Development of biological diversity and susceptibility to chemotherapy in murine cancer metastases. Cancer Res. 44:3801–3805; 1984.

    PubMed  CAS  Google Scholar 

  33. Trent, J. M.; Thompson, F. H. Methods for chromosome banding on human and experimental tumors in vitro. Methods Enzymol. 151:267–279; 1987.

    PubMed  CAS  Google Scholar 

  34. Voncken, J. W.; Morris, C.; Patengale, P., et al. Clonal development and karyotype evolution during leukemogenesis of BCR/ABL transgenic mice. Blood 79:1029–1036; 1992.

    PubMed  CAS  Google Scholar 

  35. Weichselbaum, R. R.; Dahlberg, W.; Beckett, M., et al. Radiation-resistant and repair-proficient human tumor cells may be associated with radiotherapy failure in head and neck cancer patients. Proc. Natl. Acad. Sci. 83:2684–2688; 1986.

    Article  PubMed  CAS  Google Scholar 

  36. Weichselbaum, R. R.; Beckett, M. A.; Dahlberg, W., et al. Heterogeneity of radiation response of a patient human epidermoid carcinoma cell line and four clones. Int. J. Radiat. Oncol. Biol. Phys. 14:907–912; 1988.

    PubMed  CAS  Google Scholar 

  37. Weichselbaum, R. R.; Beckett, M. A.; Schwartz, J. L., et al. Radioresistant tumor cells are present in head and neck carcinomas that recur after radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 15:575–579; 1988.

    PubMed  CAS  Google Scholar 

  38. Wiener, F.; Coleman, A.; Mock, B. A., et al. Nonrandom chromosomal change (trisomy 11) in murine plasmacytomas induced by an abl-myc retrovirus. Cancer Res. 55:1181–1188; 1995.

    PubMed  CAS  Google Scholar 

  39. Wilson, S. D.; Billings, P. R.; D’Eustachio, P., et al. Clustering of cytokine genes on mouse chromosome 11. J. Exp. Med. 171:1301–1314; 1990.

    Article  PubMed  CAS  Google Scholar 

  40. Windle, B.; Draper, B. W.; Yin, Y., et al. A central role for chromosome breakage in gene amplification, deletion formation, and amplicon integration. Genes & Dev. 5:160–174; 1991.

    Article  CAS  Google Scholar 

  41. Windle, B. E.; Wahl, G. M. Molecular dissection of mammalian gene amplification: new mechanistic insights revealed by analyses of very early events. Mutat. Res. 276:199–224; 1992.

    PubMed  CAS  Google Scholar 

  42. Woodruff, M. F. A. Tumor clonality and its biological significance. Adv. Cancer Res. 50:197–229; 1989.

    Article  Google Scholar 

  43. Wurster-Hill, D. H.; Cannizzaro, L. A.; Pettengill, O. S., et al. Cytogenetics of small cell carcinoma of the lung. Cancer Genet. Cytogenet. 13:303–330; 1984.

    Article  PubMed  CAS  Google Scholar 

  44. Yunis, J. J.; Sawyer, J. R.; Ball, D. W. Characterization of banding patterns of metaphase-prophase G-banded chromosomes and their use in gene mapping. Cytogenet. Cell. Genet. 22:679–683; 1978.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jamasbi, R.J., Ye, MQ. & Norvell, T.M. Cytogenetic analyses of a murine carcinoma cell line and six metastatic derivatives with different degrees of radioresistability. In Vitro Cell.Dev.Biol.-Animal 33, 137–144 (1997). https://doi.org/10.1007/s11626-997-0034-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-997-0034-1

Key words

Navigation