Skip to main content
Log in

Chondroitin sulfate effects on neural stem cell differentiation

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

We have investigated the role chondroitin sulfate has on cell interactions during neural plate formation in the early chick embryo. Using tissue culture isolates from the prospective neural plate, we have measured neural gene expression profiles associated with neural stem cell differentiation. Removal of chondroitin sulfate from stage 4 neural plate tissue leads to altered associations of N-cadherin-positive neural progenitors and causes changes in the normal sequence of neural marker gene expression. Absence of chondroitin sulfate in the neural plate leads to reduced Sox2 expression and is accompanied by an increase in the expression of anterior markers of neural regionalization. Results obtained in this study suggest that the presence of chondroitin sulfate in the anterior chick embryo is instrumental in maintaining cells in the neural precursor state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Bovolenta P, Mallamaci A, Puelles L, Boncinelli E (1998) Expression pattern of cSix3, a member of the six/sine oculis family of transcription factors. Mech Dev 70:201–203

    Article  PubMed  CAS  Google Scholar 

  • Brittis PA, Canning DR, Silver J (1992) Chondroitin sulfate as a regulator of neuronal patterning in the retina. Science 255:733–736

    Article  PubMed  CAS  Google Scholar 

  • Bulow HE, Hobert O (2006) The molecular diversity of glycosaminoglycans shapes animal development. Annu Rev Cell Dev Biol 22:375–407

    Article  PubMed  CAS  Google Scholar 

  • Canning DR, Cunningham RL (2014) Cell adhesion properties of neural stem cells in the chick embryo. In vitro cellular & developmental biology. Animal. doi:10.1007/s11626-014-9851-1

    Google Scholar 

  • Canning DR, Amin T, Richard E (2000) Regulation of epiblast cell movements by chondroitin sulfate during gastrulation in the chick. Dev Dyn 219:545–559

    Article  PubMed  CAS  Google Scholar 

  • Chapman SC, Brown R, Lees L, Schoenwolf GC, Lumsden A (2004) Expression analysis of chick Wnt and frizzled genes and selected inhibitors in early chick patterning. Dev Dyn 229:668–676

    Article  PubMed  CAS  Google Scholar 

  • Darnell DK, Stark MR, Schoenwolf GC (1999) Timing and cell interactions underlying neural induction in the chick embryo. Development 126:2505–2514

    PubMed  CAS  Google Scholar 

  • Deepa SS, Umehara Y, Higashiyama S, Itoh N, Sugahara K (2002) Specific molecular interactions of oversulfated chondroitin sulfate E with various heparin-binding growth factors. Implications as a physiological binding partner in the brain and other tissues. J Biol Chem 277:43707–43716

    Article  PubMed  CAS  Google Scholar 

  • Diez del Corral R, Breitkreuz DN, Storey KG (2002) Onset of neuronal differentiation is regulated by paraxial mesoderm and requires attenuation of FGF signalling. Development 129:1681–1691

    PubMed  Google Scholar 

  • Eblaghie MC, Lunn JS, Dickinson RJ, Munsterberg AE, Sanz-Ezquerro JJ, Farrell ER, Mathers J, Keyse SM, Storey K, Tickle C (2003) Negative feedback regulation of FGF signaling levels by Pyst1/ MKP3 in chick embryos. Curr Biol 13:1009–1018

    Article  PubMed  CAS  Google Scholar 

  • Eisenmann KM, McCarthy JB, Simpson MA, Keely PJ, Guan JL, Tachibana K, Lim L, Manser E, Furcht LT, Iida J (1999) Melanoma chondroitin sulphate proteoglycan regulates cell spreading through Cdc42, Ack-1 and p130cas. Nat Cell Biol 1:507–513

    Article  PubMed  CAS  Google Scholar 

  • Esteve P, Morcillo J, Bovolenta P (2000) Early and dynamic expression of cSfrp1 during chick embryo development. Mech Dev 97:217–221

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Garre P, Rodriguez-Gallardo L, Alvarez IS, Puelles L (2002) A neural plate fate map at stage HH4 in the chick: methodology and preliminary data. Brain Res Bull 57:293–295

    Article  PubMed  CAS  Google Scholar 

  • Friedlander DR, Milev P, Karthikeyan L, Margolis RK, Margolis RU, Grumet M (1994) The neuronal chondroitin sulfate proteoglycan neurocan binds to the neural cell adhesion molecules Ng-CAM/L1/NILE and N-CAM, and inhibits neuronal adhesion and neurite outgrowth. J Cell Biol 125:669–680

    Article  PubMed  CAS  Google Scholar 

  • Gilbert RJ, McKeon RJ, Darr A, Calabro A, Hascall VC, Bellamkonda RV (2005) CS-4,6 is differentially upregulated in glial scar and is a potent inhibitor of neurite extension. Mol Cell Neurosci 29:545–558

    Article  PubMed  CAS  Google Scholar 

  • Grumet M, Flaccus A, Margolis RU (1993) Functional characterization of chondroitin sulfate proteoglycans of brain: interactions with neurons and neural cell adhesion molecules. J Cell Biol 120:815–824

    Article  PubMed  CAS  Google Scholar 

  • Hamburger V, Hamilton HL (1992) A series of normal stages in the development of the chick embryo. 1951 [classical article] [see comments]. Dev Dyn 195:231–272

    Article  PubMed  CAS  Google Scholar 

  • Ida M, Shuo T, Hirano K, Tokita Y, Nakanishi K, Matsui F, Aono S, Fujita H, Fujiwara Y, Kaji T, Oohira A (2006) Identification and functions of chondroitin sulfate in the milieu of neural stem cells. J Biol Chem 281:5982–5991

    Article  PubMed  CAS  Google Scholar 

  • Izumikawa T, Kitagawa H, Mizuguchi S, Nomura KH, Nomura K, Tamura J, Gengyo-Ando K, Mitani S, Sugahara K (2004) Nematode chondroitin polymerizing factor showing cell-/organ-specific expression is indispensable for chondroitin synthesis and embryonic cell division. J Biol Chem 279:53755–53761

    Article  PubMed  CAS  Google Scholar 

  • Izumikawa T, Sato B, Kitagawa H (2014) Chondroitin sulfate is indispensable for pluripotency and differentiation of mouse embryonic stem cells. Sci Rep 4:3701

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Joyner AL, Liu A, Millet S (2000) Otx2, Gbx2 and Fgf8 interact to position and maintain a mid-hindbrain organizer. Curr Opin Cell Biol 12:736–741

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi D, Kobayashi M, Matsumoto K, Ogura T, Nakafuku M, Shimamura K (2002) Early subdivisions in the neural plate define distinct competence for inductive signals. Development 129:83–93

    PubMed  CAS  Google Scholar 

  • Lagutin OV, Zhu CC, Kobayashi D, Topczewski J, Shimamura K, Puelles L, Russell HR, McKinnon PJ, Solnica-Krezel L, Oliver G (2003) Six3 repression of Wnt signaling in the anterior neuroectoderm is essential for vertebrate forebrain development. Genes Dev 17:368–379

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li H, Leung TC, Hoffman S, Balsamo J, Lilien J (2000) Coordinate regulation of cadherin and integrin function by the chondroitin sulfate proteoglycan neurocan. J Cell Biol 149:1275–1288

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li F, Shetty AK, Sugahara K (2007) Neuritogenic activity of chondroitin/dermatan sulfate hybrid chains of embryonic pig brain and their mimicry from shark liver. Involvement of the pleiotrophin and hepatocyte growth factor signaling pathways. J Biol Chem 282:2956–2966

    Article  PubMed  CAS  Google Scholar 

  • Margolis RU, Margolis RK (1997) Chondroitin sulfate proteoglycans as mediators of axon growth and pathfinding. Cell Tissue Res 290:343–348

    Article  PubMed  CAS  Google Scholar 

  • McKeon RJ, Schreiber RC, Rudge JS, Silver J (1991) Reduction of neurite outgrowth in a model of glial scarring following CNS injury is correlated with the expression of inhibitory molecules on reactive astrocytes. J Neurosci 11:3398–3411

    PubMed  CAS  Google Scholar 

  • Newgreen DF, Powell ME, Moser B (1990) Spatiotemporal changes in HNK-1/L2 glycoconjugates on avian embryo somite and neural crest cells. Dev Biol 139:100–120

    Article  PubMed  CAS  Google Scholar 

  • Perrimon N, Bernfield M (2000) Specificities of heparan sulphate proteoglycans in developmental processes. Nature 404:725–728

    Article  PubMed  CAS  Google Scholar 

  • Perrimon N, Bernfield M (2001) Cellular functions of proteoglycans—an overview. Semin Cell Dev Biol 12:65–67

    Article  PubMed  CAS  Google Scholar 

  • Perris R, Lofberg J, Fallstrom C, von Boxberg Y, Olsson L, Newgreen DF (1990) Structural and compositional divergencies in the extracellular matrix encountered by neural crest cells in the white mutant axolotl embryo. Development 109:533–551

    PubMed  CAS  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29, e45

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pimenta AF, Strick PL, Levitt P (2001) Novel proteoglycan epitope expressed in functionally discrete patterns in primate cortical and subcortical regions. J Comp Neurol 430:369–388

    Article  PubMed  CAS  Google Scholar 

  • Pires Neto MA, Braga-de-Souza S, Lent R (1999) Extracellular matrix molecules play diverse roles in the growth and guidance of central nervous system axons. Braz J Med Biol Res 32:633–638

    Article  PubMed  CAS  Google Scholar 

  • Rauch U (1997) Modeling an extracellular environment for axonal pathfinding and fasciculation in the central nervous system. Cell Tissue Res 290:349–356

    Article  PubMed  CAS  Google Scholar 

  • Rauch U, Karthikeyan L, Maurel P, Margolis RU, Margolis RK (1992) Cloning and primary structure of neurocan, a developmentally regulated, aggregating chondroitin sulfate proteoglycan of brain. J Biol Chem 267:19536–19547

    PubMed  CAS  Google Scholar 

  • Rauch U, Feng K, Zhou XH (2001) Neurocan: a brain chondroitin sulfate proteoglycan. Cell Mol Life Sci 58:1842–1856

    Article  PubMed  CAS  Google Scholar 

  • Retzler C, Gohring W, Rauch U (1996) Analysis of neurocan structures interacting with the neural cell adhesion molecule N-CAM. J Biol Chem 271:27304–27310

    Article  PubMed  CAS  Google Scholar 

  • Rex M, Orme A, Uwanogho D, Tointon K, Wigmore PM, Sharpe PT, Scotting PJ (1997) Dynamic expression of chicken Sox2 and Sox3 genes in ectoderm induced to form neural tissue. Dev Dyn 209:323–332

    Article  PubMed  CAS  Google Scholar 

  • Schweitzer R, Tabin CJ (1999) The dynamic organizer. Nat Cell Biol 1:E179–E181

    Article  PubMed  CAS  Google Scholar 

  • Selleck SB (2000) Proteoglycans and pattern formation: sugar biochemistry meets developmental genetics. Trends Genet 16:206–212

    Article  PubMed  CAS  Google Scholar 

  • Sirko S, von Holst A, Wizenmann A, Gotz M, Faissner A (2007) Chondroitin sulfate glycosaminoglycans control proliferation, radial glia cell differentiation and neurogenesis in neural stem/progenitor cells. Development 134:2727–2738

    Article  PubMed  CAS  Google Scholar 

  • Sirko S, Akita K, Von Holst A, Faissner A (2008) Structural and functional analysis of chondroitin sulfate proteoglycans in the neural stem cell niche. Methods Enzymol 479:37–71

    Article  CAS  Google Scholar 

  • Sirko S, von Holst A, Weber A, Wizenmann A, Theocharidis U, Gotz M, Faissner A (2010) Chondroitin sulfates are required for fibroblast growth factor-2-dependent proliferation and maintenance in neural stem cells and for epidermal growth factor-dependent migration of their progeny. Stem Cells 28:775–787

    Article  PubMed  CAS  Google Scholar 

  • Snow DM, Watanabe M, Letourneau PC, Silver J (1991) A chondroitin sulfate proteoglycan may influence the direction of retinal ganglion cell outgrowth. Development 113:1473–1485

    PubMed  CAS  Google Scholar 

  • Sobel RA, Ahmed AS (2001) White matter extracellular matrix chondroitin sulfate/dermatan sulfate proteoglycans in multiple sclerosis. J Neuropathol Exp Neurol 60:1198–1207

    PubMed  CAS  Google Scholar 

  • Stacey M, Chang GW, Davies JQ, Kwakkenbos MJ, Sanderson RD, Hamann J, Gordon S, Lin HH (2003) The epidermal growth factor-like domains of the human EMR2 receptor mediate cell attachment through chondroitin sulfate glycosaminoglycans. Blood 102:2916–2924

    Article  PubMed  CAS  Google Scholar 

  • Stern CD (2002) Induction and initial patterning of the nervous system - the chick embryo enters the scene. Curr Opin Genet Dev 12:447–451

    Article  PubMed  CAS  Google Scholar 

  • Stern CD (2005) Neural induction: old problem, new findings, yet more questions. Development 132:2007–2021

    Article  PubMed  CAS  Google Scholar 

  • Storey KG, Goriely A, Sargent CM, Brown JM, Burns HD, Abud HM, Heath JK (1998) Early posterior neural tissue is induced by FGF in the chick embryo. Development 125:473–484

    PubMed  CAS  Google Scholar 

  • Takemoto T, Uchikawa M, Kamachi Y, Kondoh H (2006) Convergence of Wnt and FGF signals in the genesis of posterior neural plate through activation of the Sox2 enhancer N-1. Development 133:297–306

    Article  PubMed  CAS  Google Scholar 

  • Talts U, Kuhn U, Roos G, Rauch U (2000) Modulation of extracellular matrix adhesiveness by neurocan and identification of its molecular basis. Exp Cell Res 259:378–388

    Article  PubMed  CAS  Google Scholar 

  • Tan SS, Prieto AL, Newgreen DF, Crossin KL, Edelman GM (1991) Cytotactin expression in somites after dorsal neural tube and neural crest ablation in chicken embryos. Proc Natl Acad Sci U S A 88:6398–6402

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Williamson DA, Parrish EP, Edelman GM (1991) Distribution and expression of two interactive extracellular matrix proteins, cytotactin and cytotactin-binding proteoglycan, during development of Xenopus laevis. I. Embryonic development. J Morphol 209:189–202

    Article  PubMed  CAS  Google Scholar 

  • Wittler L, Kessel M (2004) The acquisition of neural fate in the chick. Mech Dev 121:1031–1042

    Article  PubMed  CAS  Google Scholar 

  • Zou P, Zou K, Muramatsu H, Ichihara-Tanaka K, Habuchi O, Ohtake S, Ikematsu S, Sakuma S, Muramatsu T (2003) Glycosaminoglycan structures required for strong binding to midkine, a heparin-binding growth factor. Glycobiology 13:35–42

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We greatly appreciate the provision of probe DNA from the labs of Diana Darnell, Paola Bovelenta, and Michael Kessel. Christian Clark and Satinder Sidhu contributed technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David R. Canning.

Additional information

Editor: Tetsuji Okamoto

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Canning, D.R., Brelsford, N.R. & Lovett, N.W. Chondroitin sulfate effects on neural stem cell differentiation. In Vitro Cell.Dev.Biol.-Animal 52, 35–44 (2016). https://doi.org/10.1007/s11626-015-9941-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-015-9941-8

Keywords

Navigation