Skip to main content
Log in

Expression of Transthyretin during bovine myogenic satellite cell differentiation

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Adult myogenesis responsible for the maintenance and repair of muscle tissue is mainly under the control of myogenic regulatory factors (MRFs) and a few other genes. Transthyretin gene (TTR), codes for a carrier protein for thyroxin (T4) and retinol binding protein bound with retinol in blood plasma, plays a critical role during the early stages of myogenesis. Herein, we investigated the relationship of TTR with other muscle-specific genes and report their expression in muscle satellite cells (MSCs), and increased messenger RNA (mRNA) and protein expression of TTR during MSCs differentiation. Silencing of TTR resulted in decreased myotube formation and decreased expression of myosin light chain (MYL2), myosin heavy chain 3 (MYH3), matrix gla protein (MGP), and voltage-dependent L type calcium channel (Cav1.1) genes. Increased mRNA expression observed in TTR and other myogenic genes with the addition of T4 decreased significantly following TTR knockdown, indicating the critical role of TTR in T4 transportation. Similarly, decreased expression of MGP and Cav1.1 following TTR knockdown signifies the dual role of TTR in controlling muscle myogenesis via regulation of T4 and calcium channel. Our computational and experimental evidences indicate that TTR has a relationship with MRFs and may act on calcium channel and related genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Similar content being viewed by others

References

  • Anderson JE (2000) A role for nitric oxide in muscle repair: Nitric oxide-mediated activation of muscle satellite cells. Mol Biol Cell 11:1859–1874

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Asakura A (2003) Stem cells in adult skeletal muscle. Trends Cardiovasc Med 13:123–128

    Article  PubMed  CAS  Google Scholar 

  • Beermann DH, Liboff M, Wilson DB, Hood LF (1983) Effects of exogenous thyroxine and growth hormone on satellite cell and myonuclei populations in rapidly growing rat skeletal muscle. Growth 47:426–436

    PubMed  CAS  Google Scholar 

  • Berchtold MW, Brinkmeier H, Müntener M (2000) Calcium ion in skeletal muscle: its crucial role for muscle function, plasticity, and disease. Physiol Rev 80:1215–1265

    PubMed  CAS  Google Scholar 

  • Berkes CA, Tapscott SJ (2005) MyoD and the transcriptional control of myogenesis. Semin Cell Dev Biol 16:585–595

    Article  PubMed  CAS  Google Scholar 

  • Bidaud I, Monteil A, Nargeot J, Lory P (2006) Properties and role of voltage-dependent calcium channels during mouse skeletal muscle differentiation. J Muscle Res Cell Motil 27:75–81

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Chargé SB, Rudnicki MA (2004) Cellular and molecular regulation of muscle regeneration. Physiol Rev 84:209–238

    Article  PubMed  Google Scholar 

  • Chen X, Li Y (2009) Role of matrix metalloproteinases in skeletal muscle: migration, differentiation, regeneration and fibrosis. Cell Adhes Migr 3:337–341

    Article  Google Scholar 

  • Cheng SY, Leonard JL, Davis PJ (2010) Molecular aspects of thyroid hormone actions. Endocr Rev 31:139–170

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Episkopou V, Maeda S, Nishiguchi S, Shimada K, Gaitanaris GA, Gottesman ME, Robertson EJ (1993) Disruption of the transthyretin gene results in mice with depressed levels of plasma retinol and thyroid hormone. Proc Natl Acad Sci U S A 90:2375–2379

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Farzaneh-Far A, Proudfoot D, Peter L, Weissberg, Catherine MS (2000) Matrix Gla protein is regulated by a mechanism functionally related to the calcium-sensing receptor. Biochem Biophys Res Commun 277:736–740

    Article  PubMed  CAS  Google Scholar 

  • Florini JR, Ewton DZ, Magri KA (1991) Hormones, growth factors, and myogenic differentiation. Ann Rev Physiol 53:201–216

    Article  CAS  Google Scholar 

  • Fraser JD, Price PA (1988) Lung, heart, and kidney express high levels of mRNA for the vitamin K-dependent matrix Gla protein. Implications for the possible functions of matrix Gla protein and for the tissue distribution of the gamma-carboxylase. J Biol Chem 263:11033–11036

    PubMed  CAS  Google Scholar 

  • Guerin C, Kramer S (2009) Cytoskeletal remodeling during myotube assembly and guidance: Coordinating the actin and microtubule networks. Commun Integr Biol 2:452–457

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hagiwara Y, Ozawa E (2008) Class specificity of avian and mammalian sera in regards to myogenic cell growth in vitro. possible role of transferrin in the specificity. Develop Growth Differ 24:115–123

    Article  Google Scholar 

  • Hara M, Tabata K, Suzuki T, Do MK, Mizunoya W, Nakamura M, Nishimura S, Tabata S, Ikeuchi Y, Sunagawa K, Anderson JE, Allen RE, Tatsumi R (2012) Calcium influx through a possible coupling of cation channels impacts skeletal muscle satellite cell activation in response to mechanical stretch. Am J Physiol Cell Physiol 302:C1741–C1750

    Article  PubMed  CAS  Google Scholar 

  • Hauser J, Saarikettu J, Grundström T (2008) Calcium regulation of myogenesis by differential calmodulin inhibition of basic helix-loop-helix transcription factors. Mol Biol Cell 19:2509–2519

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Heidt AB, Rojas A, Harris IS, Black BL (2007) Determinants of myogenic specificity within MyoD are required for noncanonical E box binding. Mol Cell Biol 27:5910–5920

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Herbert J, Wilcox JN, Pham KT, Fremeau RT Jr, Zeviani M, Dwork A, Soprano DR, Makover A, Goodman DS, Zimmerman EA et al (1986) Transthyretin: a choroid plexus-specific transport protein in human brain. Neurology 36:900–911

    Article  PubMed  CAS  Google Scholar 

  • Ho JWK, Stefani M, Remedios CG, Charleston MA (2008) Differential variability analysis of gene expression and its application to human diseases. Bioinformatics 24:390–398

    Article  Google Scholar 

  • Khan A, Wang W, Khan S R (2013) Calcium oxalate nephrolithiasis and expression of matrix GLA protein in the kidneys. World J Urol

  • Kumar D, Shadrach JL, Wagers AJ, Lassar AB (2009) Id3 is a direct transcriptional target of Pax7 in quiescent satellite cells. Mol Biol Cell 20:3170–3177

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lee EJ, Shin YM, Lee HJ, Yoon DH, Chun TH, Lee YS, Choi I (2010) Identification of cuts-specific myogenic marker genes in Hanwoo by DNA microarray. J Anim Sci Technol 52:329–336

    Article  CAS  Google Scholar 

  • Lee EJ, Lee HJ, Kamli MR, Pokharel S, Bhat AR, Lee YH (2012a) Depotspecific gene expression profiles during differentiation and transdifferentiation of bovine muscle satellite cells, and differentiation of preadipocytes. Genomics 100:195–202

    Article  PubMed  CAS  Google Scholar 

  • Lee EJ, Kamli MR, Bhat AR, Pokharel S, Lee DM, Ki SH, Kim TI, Hong S, Choi I (2012b) Effect of porcine placenta steroid extract on myogenic satellite cell proliferation, transdifferentiation, and lipid accumulation. In Vitro Cell Dev Biol Anim 48:326–333

    Article  PubMed  CAS  Google Scholar 

  • Lee EJ, Bhat AR, Kamli MR, Pokharel S, Chun T, Lee YH, Nahm SS, Nam JH, Hong SK, Yang B, Chung KY, Kim SH, Choi I (2013a) Transthyretin is a key regulator of myoblast differentiation. PLoS ONE 22:e63627

    Article  Google Scholar 

  • Lee EJ, Kamli MR, Pokharel S, Malik A, Tareq KMA, Bhat AR, Park HB, Lee SY, Kim SH, Yang B, Tirosh S, Jeong KY, Choi I (2013b) Expressed sequence tags for bovine muscle satellite cells, Myotube formed-cells and adipocyte-like cells. PLoS ONE 8:e79780

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lipscombe D, Helton TD, Xu W (2004) L-type calcium channels: the low down. J Neurophysiol 92:2633–2641

    Article  PubMed  CAS  Google Scholar 

  • Lu X, Gao B, Yasui T, Li Y, Liu T, Mao X, Hirose M, Wu Y, Yu D, Zhu Q, Kohri K, Xiao C (2013) Matrix Gla protein is involved in crystal formation in kidney of hyperoxaluric rats. Kidney Blood Press Res 37:15–23

    Article  PubMed  CAS  Google Scholar 

  • Merkulova T, Keller A, Oliviero P, Marotte F, Samuel JL, Rappaport L, Lamandé N, Lucas M (2000) Thyroid hormones differentially modulate enolase isozymes during rat skeletal and cardiac muscle development. Am J Physiol Endocrinol Metab 278:E330–E339

    PubMed  CAS  Google Scholar 

  • Miller KJ, Thaloor D, Matteson S, Pavlath GK (2000) Hepatocyte growth factor affects satellite cell activation and differentiation in regenerating skeletal muscle. Am J Physiol Cell Physiol 278:C174–C181

    PubMed  CAS  Google Scholar 

  • Mizuno R, Cavallaro T, Herbert J (1992) Temporal expression of the transthyretin gene in the developing rat eye. Invest Ophthalmol Vis Sci 33:341–349

    PubMed  CAS  Google Scholar 

  • Monaco HL (2000) The transthyretin-retinol-binding protein complex. Biochim Biophys Acta 1482:65–72

    Article  PubMed  CAS  Google Scholar 

  • Monk JA, Sims NA, Dziegielewska KM, Weiss RE, Ramsay RG, Richardson SJ (2012) Delayed development of specific thyroid hormone-regulated events in transthyretin null mice. Am J Physiol Endocrinol Metab 304:E23–E31

    Article  PubMed  PubMed Central  Google Scholar 

  • Moran JL, Li Y, Hill AA, Mounts WM, Miller CP (2002) Gene expression changes during mouse skeletal myoblast differentiation revealed by transcriptional profiling. Physiol Genomics 10:103–111

    PubMed  CAS  Google Scholar 

  • Myung N, Connelly S, Kim B, Park SJ, Wilson IA, Kelly JW, Choi S (2013) Bifunctional coumarin derivatives that inhibit transthyretin amyloidogenesis and serve as fluorescent transthyretin folding sensors. Chem Commun (Camb) 49:9188–9190

    Article  CAS  Google Scholar 

  • Olguin HC, Yang Z, Tapscott SJ, Olwin BB (2007) Reciprocal inhibition between Pax7 and muscle regulatory factors modulates myogenic cell fate determination. J Cell Biol 177:769–779

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Palha JA, Ballinari D, Amboldi N, Cardoso I, Fernandes R, Bellotti V, Merlini G, Saraiva MJ (2000) 4'-Iodo-4'-deoxydoxorubicin disrupts the fibrillar structure of transthyretin amyloid. Am J Pathol 156:1919–1925

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Péault B, Rudnicki M, Torrente Y, Cossu G, Tremblay JP, Partridge T, Gussoni E, Kunkel ML, Huard J (2007) Stem and progenitor cells in skeletal muscle development, maintenance, and therapy. Mol Ther 15:867–877

    Article  PubMed  Google Scholar 

  • Przybylski RJ, Szigeti V, Davidheiser S, Kirby AC (1994) Calcium regulation of skeletal myogenesis. II. Extracellular and cell surface effects. Cell Calcium 15:132–142

    Article  PubMed  CAS  Google Scholar 

  • Refai E, Dekki N, Yang SN, Imreh G, Cabrera O, Yu L, Yang G, Norgren S, Rössner SM, Inverardi L, Ricordi C, Olivecrona G, Andersson M, Jörnvall H, Berggren PO, Juntti-Berggren L (2005) Transthyretin constitutes a functional component in pancreatic beta-cell stimulus-secretion coupling. Proc Natl Acad Sci U S A 102:17020–17025

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Richardson SJ (2007) Cell and molecular biology of transthyretin and thyroid hormones. Int Rev Cytol 258:137–193

    Article  PubMed  CAS  Google Scholar 

  • Ruberg FL, Berk JL (2012) Transthyretin (TTR) cardiac amyloidosis. Circulation 126:1286–1300

    Article  PubMed  PubMed Central  Google Scholar 

  • Sabourin LA, Rudnicki MA (2000) The molecular regulation of myogenesis. Clin Genet 57:16–25

    Article  PubMed  CAS  Google Scholar 

  • Sandra MO, Isabel C, Maria JS (2012) Transthyretin: roles in the nervous system beyond thyroxine and retinol transport. Expert Rev Endocrinol Metab 7:181–189

    Article  Google Scholar 

  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Shin DM, Muallem S (2008) Skeletal muscle dressed in SOCs. Nat Cell Biol 10:639–641

    Article  PubMed  CAS  Google Scholar 

  • Silaghi CN, Fodor D, Crăciun AM (2013) Circulating matrix Gla protein: a potential tool to identify minor carotid stenosis with calcification in a risk population. Clin Chem Lab Med 51:1115–1123

    Article  PubMed  CAS  Google Scholar 

  • Sterrenburg E, Turk R, ‘t Hoen PAC, van Deutekom JC, Boer JM et al (2004) Large-scale gene expression analysis of human skeletal myoblast differentiation. Neuromuscul Disord 14:507–518

    Article  PubMed  Google Scholar 

  • Tchkonia T, Lenburg M, Thomou T, Giorgadze N, Frampton G, Pirtskhalava T, Cartwright A, Cartwright M, Flanagan J, Karagiannides I, Gerry N, Forse RA, Tchoukalova Y, Jensen MD, Pothoulakis C, Kirkland JL (2006) Identification of depot-specific human fat cell progenitors through distinct expression profiles and developmental gene patterns. Am J Physiol Endocrinol Metab 292:E298–E307

    Article  PubMed  Google Scholar 

  • Valmiki RR, Jang E, Inho Choi I, Heo KN, Duhak Yoon, Kim TH, Lee H (2011) Proteomic analysis of bovine muscle satellite cells during myogenic differentiation. (Report). Asian-Aust J Anim Sci 24:1288–1302

  • Warde-Farley D, Donaldson SL, Comes O, Zuberi K, Badrawi R, Chao P, Franz M, Grouios C, Kazi F, Lopes CT, Maitland A, Mostafavi S, Montojo J, Shao Q, Wright G, Bader GD, Morris Q (2010) The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res 38:W214–W220

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Waung JA, Bassett JH, Williams GR (2012) Thyroid hormone metabolism in skeletal development and adult bone maintenance. Trends Endocrinol Metab 23:155–162

    Article  PubMed  CAS  Google Scholar 

  • Wei B, Jin JP (2011) Troponin T isoforms and posttranscriptional modifications: Evolution, regulation and function. Arch Biochem Biophys 15:144–154

    Article  Google Scholar 

  • Westermark GT, Westermark P (2008) Transthyretin and amyloid in the islets of Langerhans in type-2 diabetes. Exp Diabetes Res 429274:2008

    Google Scholar 

  • Yablonka-Reuveni Z (2011) The skeletal muscle satellite cell: Still young and fascinating at 50. J Histochem Cytochem 59:1041–1059

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zammit PS (2008) All muscle satellite cells are equal, but are some more equal than others? J Cell Sci 15:2975–2982

    Article  Google Scholar 

  • Zhang SZ, Xu Y, Xie HQ, Li XQ, Wei YQ, Yang ZM (2009) The possible role of myosin light chain in myoblast proliferation. Biol Res 42:121–132

    PubMed  Google Scholar 

  • Zhao J, Araki N, Nishimotom SK (1995) Quantitation of matrix Gla protein mRNA by competitive polymerase chain reaction using glyceraldehyde-3-phosphate dehydrogenase as an internal control. Gene 3:159–165

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the BioGreen 21 Program (Project No. PJ907099), Rural Development Administration, Republic of Korea. All research materials used in this study were provided by the Bovine Genome Resources Bank, Yeungnam University, Gyeongsan, Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eun Ju Lee or Inho Choi.

Additional information

Editor: T. Okamoto

Smritee Pokharel and Majid Rasool Kamli contributed equally to this work

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

(DOCX 13.1 kb)

Supplementary Table 2

(DOCX 21.6 kb)

Supplementary Figure 1

A) Timecourse study on MyoD on MSCs cultured for 10, 12,14, 16 and 18 days. B) T4 treatment and its effect on TTR mRNA expression at day 16. (TIFF 1.25 mb)

Fig6

A) Timecourse study on MyoD on MSCs cultured for 10, 12,14, 16 and 18 days. B) T4 treatment and its effect on TTR mRNA expression at day 16. (GIF 75.9 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pokharel, S., Kamli, M.R., Mir, B.A. et al. Expression of Transthyretin during bovine myogenic satellite cell differentiation. In Vitro Cell.Dev.Biol.-Animal 50, 756–765 (2014). https://doi.org/10.1007/s11626-014-9757-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-014-9757-y

Keywords

Navigation