Skip to main content
Log in

Efficient in vitro adipocyte model of long-term lipolysis: A tool to study the behavior of lipophilic compounds

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

The triglycerides (TGs) stored in the white adipose tissue are mobilized during periods of negative energy balance. To date, there is no in vitro model of adipocytes imitating a long period of negative energy balance in which triglycerides are highly mobilized. Such model would allow studying the mobilization of TGs and lipophilic compounds trapped within the adipose tissue (e.g., pollutants and vitamins). The present study aims at developing a performing long-term in vitro lipolysis in adipocytes, resulting in a significant decrease of TG stores. Lipolysis was induced on differentiated rat adipocytes by a lipolytic medium with or without isoproterenol for 12 h. The condition with isoproterenol was duplicated, once with medium renewal every 3 h and once without medium renewal. Adding isoproterenol efficiently triggered lipolysis in a short time (3 h). However, a single stimulation by isoproterenol, without medium renewal, was not sufficient to reduce the TG content during a longer term (12 h). A reesterification of fatty acids occurred after a few hours of lipolysis, resulting in a novel increase of cellular lipids. Regular medium renewal combined with repeated isoproterenol stimulations led to almost emptied cells after 12 h. However, medium renewal without isoproterenol stimulation for 12 h was as efficient in terms of lipid mobilization. Our study demonstrates that, over a short-term period, isoproterenol is required to exert a significant lipolytic effect on adipocytes. During a long-term period, the presence of isoproterenol is no longer essential. Instead, medium renewal becomes the main factor involved in cell emptying. The efficiency of this protocol was demonstrated by visual tracking of the cells and by monitoring the dynamics of release of a lipophilic compound, PCB-153, from adipocytes during lipolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.

Similar content being viewed by others

References

  • Ahmadian M.; Wang Y.; Sul H. S. Lipolysis in adipocytes. Int. J. Biochem. Cell Biol. 42: 555–559; 2010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Alomar M.; Tasiaux H.; Remacle S.; George F.; Paul D.; Donnay I. Kinetics of fertilization and development, and sex ratio of bovine embryos produced using the semen of different bulls. Anim. Reprod. Sci. 107: 48–61; 2008.

    Article  CAS  PubMed  Google Scholar 

  • Anthonsen M. W.; Rönnstrand L.; Wernstedt C.; Degerman E.; Holm C. Identification of novel phosphorylation sites in hormone-sensitive lipase that are phosphorylated in response to isoproterenol and govern activation properties in vitro. J. Biol. Chem. 273: 215–221; 1998.

    Article  CAS  PubMed  Google Scholar 

  • Antras-Ferry J.; Robin P.; Robin D.; Forest C. Fatty acids and fibrates are potent inducers of transcription of the phosphenol pyruvate carboxykinase gene in adipocytes. Eur. J. Biochem. 234: 390–396; 1995.

    Article  CAS  PubMed  Google Scholar 

  • Belfrage P.; Fredrikson G.; Nilsson N. O.; Stralfors P. Regulation of adipose-tissue lipolysis by phosphorylation of hormone-sensitive lipase. Int. J. Obes. 5: 635–641; 1981.

    CAS  PubMed  Google Scholar 

  • Bourez S.; Joly A.; Covaci A.; Remacle C.; Larondelle Y.; Schneider Y.-J.; Debier C. Accumulation capacity of primary cultures of adipocytes for PCB-126: influence of cell differentiation stage and triglyceride levels. Toxicol. Lett. 214: 243–250; 2012a.

    Article  CAS  PubMed  Google Scholar 

  • Bourez S.; Le Lay S.; Van den Daelen C.; Louis C.; Larondelle Y.; Thomé J.-P.; Schneider Y.-J.; Dugail I.; Debier C. Accumulation of polychlorinated biphenyls in adipocytes: selective targeting to lipid droplets and role of caveolin-1. PLoS. One. 7: e31834; 2012b.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brasaemle D.; Subramanian V.; Garcia A.; Marcinkiewicz A.; Rothenberg A. Perilipin A and the control of triacylglycerol metabolism. Mol. Cell. Biochem. 326: 15–21; 2009.

    Article  CAS  PubMed  Google Scholar 

  • Brasaemle D. L. Thematic review series: adipocyte biology. The perilipin family of structural lipid droplet proteins: stabilization of lipid droplets and control of lipolysis. J. Lipid Res. 48: 2547–2559; 2007.

    Article  CAS  PubMed  Google Scholar 

  • Brasaemle D. L.; Dolios G.; Shapiro L.; Wang R. Proteomic analysis of proteins associated with lipid droplets of basal and lipolytically stimulated 3T3-L1 adipocytes. J. Biol. Chem. 279: 46835–46842; 2004.

    Article  CAS  PubMed  Google Scholar 

  • Brasaemle D. L.; Levin D. M.; Adler-Wailes D. C.; Londos C. The lipolytic stimulation of 3T3-L1 adipocytes promotes the translocation of hormone-sensitive lipase to the surfaces of lipid storage droplets. Biochim. Biophys. Acta 1483: 251–262; 2000.

    Article  CAS  PubMed  Google Scholar 

  • Chaves V. E.; Frasson D.; Kawashita N. H. Several agents and pathways regulate lipolysis in adipocytes. Biochimie 93: 1631–1640; 2011.

    Article  CAS  PubMed  Google Scholar 

  • Cherel Y.; Le Maho Y. Five months of fasting in king penguin chicks: body mass loss and fuel metabolism. Am. J. Physiol. Regul. Integr. Comp. Physiol. 249: 387–392; 1985.

    Google Scholar 

  • Chevrier J.; Dewailly E.; Ayotte P.; Mauriege P.; Despres J. P.; Tremblay A. Body weight loss increases plasma and adipose tissue concentrations of potentially toxic pollutants in obese individuals. Int. J. Obes. Relat. Metab. Disord. 24: 1272–1278; 2000.

    Article  CAS  PubMed  Google Scholar 

  • Clifford G. M.; Londos C.; Kraemer F. B.; Vernon R. G.; Yeaman S. J. Translocation of hormone-sensitive lipase and perilipin upon lipolytic stimulation of rat adipocytes. J. Biol. Chem. 275: 5011–5015; 2000.

    Article  CAS  PubMed  Google Scholar 

  • Covaci A.; Voorspoels S.; Roosens L.; Jacobs W.; Blust R.; Neels H. Polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) in human liver and adipose tissue samples from Belgium. Chemosphere 73: 170–175; 2008.

    Article  CAS  PubMed  Google Scholar 

  • de Jong J. C.; Sørensen L. G.; Tornqvist H.; Jacobsen P. Carbazates as potent inhibitors of hormone-sensitive lipase. Bioorg. Med. Chem. Lett. 14: 1741–1744; 2004.

    Article  PubMed  Google Scholar 

  • Debier C.; Chalon C.; Le Bœuf B. J.; de Tillesse T.; Larondelle Y.; Thomé J.-P. Mobilization of PCBs from blubber to blood in northern elephant seals (Mirounga angustirostris) during the post-weaning fast. Aquat. Toxicol. 80: 149–157; 2006.

    Article  CAS  PubMed  Google Scholar 

  • Debier C.; Crocker D. E.; Houser D. S.; Vanden Berghe M.; Fowler M.; Mignolet E.; de Tillesse T.; Rees J.-F.; Thomé J.-P.; Larondelle Y. Differential changes of fat-soluble vitamins and pollutants during lactation in northern elephant seal mother-pup pairs. Comp. Biochem. Physiol. A 162: 323–330; 2012.

    Google Scholar 

  • Debier C.; Pomeroy P. P.; Dupont C.; Joiris C.; Comblin V.; Boulengé E. L.; Larondelle Y.; Thomé J.-P. Quantitative dynamics of PCB transfer from mother to pup during lactation in UK grey seals Halichoerus grypus. Mar. Ecol. Prog. Ser. 247: 237–248; 2003.

    Article  CAS  Google Scholar 

  • Dirtu A. C.; Dirinck E.; Malarvannan G.; Neels H.; Van Gaal L.; Jorens P. G.; Covaci A. Dynamics of organohalogenated contaminants in human serum from obese individuals during one year of weight loss treatment. Environ. Sci. Technol. 47: 12441–12449; 2013.

    Article  CAS  PubMed  Google Scholar 

  • Duplus E.; Forest C. Is there a single mechanism for fatty acid regulation of gene transcription? Biochem. Pharmacol. 64: 893–901; 2002.

    Article  CAS  PubMed  Google Scholar 

  • Egan J. J.; Greenberg A. S.; Chang M. K.; Wek S. A.; Moos M. C.; Londos C. Mechanism of hormone-stimulated lipolysis in adipocytes: translocation of hormone-sensitive lipase to the lipid storage droplet. Proc. Natl. Acad. Sci. U. S. A. 89: 8537–8541; 1992.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Faroon O.; Jones D.; De Rosa C. Effects of polychlorinated biphenyls on the nervous system. Toxicol. Ind. Health 16: 305–333; 2000.

    Article  CAS  PubMed  Google Scholar 

  • Forest C.; Franckhauser S.; Glorian M.; Antras-Ferry J.; Robin D.; Robin P. Regulation of gene transcription by fatty acids, fibrates and prostaglandins: the phosphoenolpyruvate carboxykinase gene as a model. Prostaglandins. Leukot. Essent. Fat. Acids. 57: 47–56; 1997.

    Article  CAS  Google Scholar 

  • Gallenberg L. A.; Ring B. J.; Vodicnik M. J. Influence of lipolysis on the mobilization of 2,4,5,2′4′,5′‐hexachlorobiphenyl from adipocytes in vitro. J. Toxicol. Environ. Health 20: 163–171; 1987.

    Google Scholar 

  • Gallenberg L. A.; Vodicnik M. J. Potential mechanisms for redistribution of polychlorinated biphenyls during pregnancy and lactation. Xenobiotica 17: 299–310; 1987.

    Article  CAS  PubMed  Google Scholar 

  • Getty-Kaushik L.; Richard A.-M. T.; Corkey B. E. Free fatty acid regulation of glucose-dependent intrinsic oscillatory lipolysis in perifused isolated rat adipocytes. Diabetes 54: 629–637; 2005.

    Article  CAS  PubMed  Google Scholar 

  • Golden R. J.; Noller K. L.; Titus-Ernstoff L.; Kaufman R. H.; Mittendorf R.; Stillman R.; Reese E. A. Environmental endocrine modulators and human health: an assessment of the biological evidence. Crit. Rev. Toxicol. 28: 109–227; 1998.

    Article  CAS  PubMed  Google Scholar 

  • Goldrick R. Morphological changes in the adipocyte during fat deposition and mobilization. Am. J. Physiol. 212: 777–782; 1967.

    CAS  PubMed  Google Scholar 

  • Guan H.-P.; Li Y.; Jensen M. V.; Newgard C. B.; Steppan C. M.; Lazar M. A. A futile metabolic cycle activated in adipocytes by antidiabetic agents. Nat. Med. 8: 1122–1128; 2002.

    Article  CAS  PubMed  Google Scholar 

  • Harmancey R.; Senard J.-M.; Pathak A.; Desmoulin F.; Claparols C.; Rouet P.; Smih F. The vasoactive peptide adrenomedullin is secreted by adipocytes and inhibits lipolysis through NO-mediated β-adrenergic agonist oxidation. FASEB J. 19: 1045–1047; 2005.

    CAS  PubMed  Google Scholar 

  • Huus K.; Havelund S.; Olsen H. B.; van de Weert M.; Frokjaer S. Thermal dissociation and unfolding of insulin. Biochemistry (Mosc) 44: 11171–11177; 2005.

    Article  CAS  Google Scholar 

  • Imbeault P.; Chevrier J.; Dewailly E.; Ayotte P.; Desprs J. P.; Maurige P.; Tremblay A. Increase in plasma pollutant levels in response to weight loss is associated with the reduction of fasting insulin levels in men but not in women. Metabolism 51: 482–486; 2002.

    Article  CAS  PubMed  Google Scholar 

  • Jéquier E.; Tappy L. Regulation of body weight in humans. Physiol. Rev. 79: 451–480; 1999.

    PubMed  Google Scholar 

  • Khoo J. C.; Fong W. W.; Steinberg D. Activation of hormone-sensitive lipase from human adipose tissue by cyclic AMP-dependent protein kinase. Biochem. Biophys. Res. Commun. 49: 407–413; 1972.

    Article  CAS  PubMed  Google Scholar 

  • Kim M. J.; Marchand P.; Henegar C.; Antignac J. P.; Alili R.; Poitou C.; Bouillot J. L.; Basdevant A.; Le Bizec B.; Barouki R.; Clément K. Fate and complex pathogenic effects of dioxins and polychlorinated biphenyls in obese subjects before and after drastic weight loss. Environ. Health Perspect. 119: 377–383; 2011.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kuriyama S. N.; Chahoud I. In utero exposure to low-dose 2,3′,4,4′,5-pentachlorobiphenyl (PCB 118) impairs male fertility and alters neurobehavior in rat offspring. Toxicology 202: 185–197; 2004.

    Article  CAS  PubMed  Google Scholar 

  • La Merrill M.; Emond C.; Kim M. J.; Antignac J. P.; Le Bizec B.; Clément K.; Birnbaum L. S.; Barouki R. Toxicological function of adipose tissue: focus on persistent organic pollutants. Environ. Health Perspect. 121: 162–169; 2013.

    PubMed Central  PubMed  Google Scholar 

  • Lafontan M.; Langin D. Lipolysis and lipid mobilization in human adipose tissue. Prog. Lipid Res. 48: 275–297; 2009.

    Article  CAS  PubMed  Google Scholar 

  • Large V.; Peroni O.; Letexier D.; Ray H.; Beylot M. Metabolism of lipids in human white adipocyte. Diabetes Metab. 30: 294–309; 2004.

    Article  CAS  PubMed  Google Scholar 

  • Lass A.; Zimmermann R.; Haemmerle G.; Riederer M.; Schoiswohl G.; Schweiger M.; Kienesberger P.; Strauss J. G.; Gorkiewicz G.; Zechner R. Adipose triglyceride lipase-mediated lipolysis of cellular fat stores is activated by CGI-58 and defective in Chanarin-Dorfman Syndrome. Cell. Metab. 3: 309–319; 2006.

    Article  CAS  PubMed  Google Scholar 

  • Lass A.; Zimmermann R.; Oberer M.; Zechner R. Lipolysis — a highly regulated multi-enzyme complex mediates the catabolism of cellular fat stores. Prog. Lipid. Res. 50: 14–27; 2011.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Le Lay S.; Ferre P.; Dugail I. Adipocyte cholesterol balance in obesity. Biochem. Soc. Trans. 32: 103–106; 2004.

    Article  PubMed  Google Scholar 

  • Lee S. K.; Ou Y. C.; Yang R. S. H. Comparison of pharmacokinetic interactions and physiologically based pharmacokinetic modeling of PCB 153 and PCB 126 in nonpregnant mice, lactating mice, and suckling pups. Toxicol. Sci. 65: 26–34; 2002.

    Article  CAS  PubMed  Google Scholar 

  • Ludewig G.; Lehmann L.; Esch H.; Robertson L. W. Metabolic activation of PCBs to carcinogens in vivo—a review. Environ. Toxicol. Pharmacol. 25: 241–246; 2008.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Meeker J. D.; Maity A.; Missmer S. A.; Williams P. L.; Mahalingaiah S.; Ehrlich S.; Berry K. F.; Altshul L.; Perry M. J.; Cramer D. W.; Hauser R. Serum concentrations of polychlorinated biphenyls in relation to in vitro fertilization outcomes. Environ. Health Perspect. 119: 1010–1016; 2011.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nagayama M.; Shimizu K.; Taira T.; Uchida T.; Gohara K. Shrinking and development of lipid droplets in adipocytes during catecholamine-induced lipolysis. FEBS Lett. 584: 86–92; 2010.

    Article  CAS  PubMed  Google Scholar 

  • Nye C.; Kim J.; Kalhan S. C.; Hanson R. W. Reassessing triglyceride synthesis in adipose tissue. Trends Endocrin. Met. 19: 356–361; 2008.

    Article  CAS  Google Scholar 

  • Raclot T. Selective mobilization of fatty acids from adipose tissue triacylglycerols. Prog. Lipid Res. 42: 257–288; 2003.

    Article  CAS  PubMed  Google Scholar 

  • Rapold R. A.; Wueest S.; Knoepfel A.; Schoenle E. J.; Konrad D. Fas activates lipolysis in a Ca2+-CaMKII-dependent manner in 3T3-L1 adipocytes. J. Lipid Res. 54: 63–70; 2013.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reshef L.; Olswang Y.; Cassuto H.; Blum B.; Croniger C. M.; Kalhan S. C.; Tilghman S. M.; Hanson R. W. Glyceroneogenesis and the triglyceride/fatty acid cycle. J. Biol. Chem. 278: 30413–30416; 2003.

    Article  CAS  PubMed  Google Scholar 

  • Ring B. J.; Seitz K. R.; Gallenberg L. A.; Vodicnik M. J. The effect of diet and litter size on the elimination of 2,4,5,2′,4′,5′-[14C] hexachlorobiphenyl from lactating mice. Toxicol. Appl. Pharmacol. 104: 9–16; 1990.

    Article  CAS  PubMed  Google Scholar 

  • Robinson J.; Newsholme E. A. Glycerol kinase activities in rat heart and adipose tissue. Biochem. J. 104: 2C–4C; 1967.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rodbell M. Metabolism of Isolated Fat Cells. J. Biol. Chem. 239: 375–380; 1964.

    CAS  PubMed  Google Scholar 

  • Rogan W. J.; Gladen B. C.; McKinney J. D.; Carreras N.; Hardy P.; Thullen J.; Tingelstad J.; Tully M. Polychlorinated biphenyls (PCBs) and dichlorodiphenyl dichloroethene (DDE) in human milk: effects of maternal factors and previous lactation. Am. J. Public Health 76: 172–177; 1986.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Roos V.; Rönn M.; Salihovic S.; Lind L.; Bavel B.; Kullberg J.; Johansson L.; Ahlström H.; Lind P. M. Circulating levels of persistent organic pollutants in relation to visceral and subcutaneous adipose tissue by abdominal MRI. Obesity 21: 413–418; 2013.

    Article  CAS  PubMed  Google Scholar 

  • Schneider A.-C.; Beguin P.; Bourez S.; Perfield II J. W.; Mignolet E.; Debier C.; Schneider Y.-J.; Larondelle Y. Conversion of t11t13 CLA into c9t11 CLA in Caco-2 cells and inhibition by sterculic oil. PLoS ONE 7: e32824; 2012.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thompson B. R.; Lobo S.; Bernlohr D. A. Fatty acid flux in adipocytes: the in’s and out’s of fat cell lipid trafficking. Mol. Cell. Endocrinol. 318: 24–33; 2010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tordjman J.; Khazen W.; Antoine B.; Chauvet G.; Quette J.; Fouque F.; Beale E. G.; Benelli C.; Forest C. Regulation of glyceroneogenesis and phosphoenolpyruvate carboxykinase by fatty acids, retinoic acids and thiazolidinediones: potential relevance to type 2 diabetes. Biochimie 85: 1213–1218; 2003.

    Article  CAS  PubMed  Google Scholar 

  • Van Dang Q. C.; Focant M.; Mignolet E.; Turu C.; Froidmont E.; Larondelle Y. Influence of the diet structure on ruminal biohydrogenation and milk fatty acid composition of cows fed extruded linseed. Anim. Feed Sci. Technol. 169: 1–10; 2011.

    Article  Google Scholar 

  • Vanden Berghe M.; Mat A.; Arriola A.; Polain S.; Stekke V.; Thomé J.-P.; Gaspart F.; Pomeroy P.; Larondelle Y.; Debier C. Relationships between vitamin A and PCBs in grey seal mothers and pups during lactation. Environ. Pollut. 158: 1570–1575; 2010.

    Article  CAS  PubMed  Google Scholar 

  • Vanden Berghe M.; Weijs L.; Habran S.; Das K.; Bugli C.; Rees J.-F.; Pomeroy P.; Covaci A.; Debier C. Selective transfer of persistent organic pollutants and their metabolites in grey seals during lactation. Environ. Int. 46: 6–15; 2012.

    Article  CAS  PubMed  Google Scholar 

  • Vargovic P.; Ukropec J.; Laukova M.; Cleary S.; Manz B.; Pacak K.; Kvetnansky R. Adipocytes as a new source of catecholamine production. FEBS Lett. 585: 2279–2284; 2011.

    Article  CAS  PubMed  Google Scholar 

  • Wang S.; Soni K. G.; Semache M.; Casavant S.; Fortier M.; Pan L.; Mitchell G. A. Lipolysis and the integrated physiology of lipid energy metabolism. Mol. Genet. Metab. 95: 117–126; 2008.

    Article  CAS  PubMed  Google Scholar 

  • Wassermann M.; Wassermann D.; Cucos S.; Miller H. J. World PCBs map: storage and effects in man and his biologic environment in the 1970s. Ann. N. Y. Acad. Sci. 320: 69–124; 1979.

    Article  CAS  PubMed  Google Scholar 

  • Zechner R.; Madeo F. Cell biology: another way to get rid of fat. Nature 458: 1118–1119; 2009.

    Article  CAS  PubMed  Google Scholar 

  • Zhou L.; Wang X.; Yang Y.; Wu L.; Li F.; Zhang R.; Yuan G.; Wang N.; Chen M.; Ning G. Berberine attenuates cAMP-induced lipolysis via reducing the inhibition of phosphodiesterase in 3T3-L1 adipocytes. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 1812: 527–535; 2011.

    Article  CAS  Google Scholar 

  • Zimmermann R.; Lass A.; Haemmerle G.; Zechner R. Fate of fat: the role of adipose triglyceride lipase in lipolysis. Biochim. Biophys. Acta 1791: 494–500; 2009.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are very grateful to Marie-Thérèse Ahn, Daniel Jal, Willy Marteau, and Philippe Bombaerts from “Institut des Sciences de la Vie” (ISV), UCLouvain, for their technical assistance. We also thank Pauline Beguin, Julie Winand, and Anne-Catherine Schneider from ISV for their help in the fatty acid analyses. Members of “Support en méthodologie et calcul statistique” (Institut multidisciplinaire pour la modélisation et l’analyse quantitative, UCLouvain, Belgium) are gratefully acknowledged for the collaboration in the statistical analyses. We also greatly appreciated the help and advice of Guillaume Bernard for picture processing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline Louis.

Additional information

Editor: T. Okamoto

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(AVI 1799 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Louis, C., Van den Daelen, C., Tinant, G. et al. Efficient in vitro adipocyte model of long-term lipolysis: A tool to study the behavior of lipophilic compounds. In Vitro Cell.Dev.Biol.-Animal 50, 507–518 (2014). https://doi.org/10.1007/s11626-014-9733-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-014-9733-6

Keywords

Navigation