Skip to main content

Advertisement

Log in

Long-term culture and analysis of cashmere goat Sertoli cells

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Sertoli cells have important functions in the testis for spermatogenesis. Thus, Sertoli cell culture systems have been established in many animals, such as rat, mouse, human, dog, cow, and pig, but a goat culture has not been reported. This study describes the isolation and culture of Sertoli cells from 3- to 4-month-old cashmere goat (Capra hircus) testes. These proliferative cells were expanded for 20 passages and repeatedly cryopreserved in vitro, in contrast to previous study in human, of which maintain steady growth for up to seven passages and only passages 1 to 5 could be refrozen. The microstructure and ultrastructure of the culture were typical of Sertoli cells, bearing irregular nuclei and a cytoplasm that was rich in smooth and rough endoplasmic reticulum, mitochondria, Golgi, lysosomes, lipid drops, and glycogenosomes. By immunofluorescence analysis, the all cells expressed SRY-related HMG box gene 9 (Sox9). Growth curves and 5-bromo-2′-deoxyuridine (BrdU) incorporation were used to analyze the proliferation of the cultured cells. With increasing passage times, the proliferation of the Sertoli cells declined, but the transcription of glial cell-derived neurotrophic factor (GDNF), stem cell factor (SCF), and β1-integrin was constant. By flow cytometry, the cells retained the ability to proliferate after 5 yr of cryopreservation. Thus, cashmere goat Sertoli cells have significant proliferative potential in vitro, expressing germ cell regulatory factors and have important applications in studying Sertoli cell-germ cell interactions, spermatogenesis, reproductive toxicology, and male infertility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.

Similar content being viewed by others

References

  • Ahmed E. A.; BartA-van Rijbroek A. D.; Kal H. B.; Sadri-Ardekani H.; Mizrak S. C.; van Pelt A. M.; de Rooij D. G. Proliferative activity in vitro and DNA repair indicate that adult mouse and human Sertoli cells are not terminally differentiated, quiescent cells. Biol. Reprod. 80: 1084–1091; 2009.

    Article  CAS  PubMed  Google Scholar 

  • Aly H. A.; Lightfoot D. A.; El-Shemy H. A. Bacterial lipopolysaccharide-induced oxidative stress in adult rat Sertoli cells in vitro. Toxicol. In Vitro 24: 1266–1272; 2010.

    Article  CAS  PubMed  Google Scholar 

  • Armstrong D. T.; Moon Y. S.; Fritz I. B.; Dorrington J. H. Synthesis of estradiol-17 beta by Sertoli cells in culture: stimulation by FSH and dibutyryl cyclic AMP. Curr. Top. Mol. Endocrinol. 2: 85–96; 1975.

    CAS  PubMed  Google Scholar 

  • Barrionuevo F.; Scherer G. SOX E genes SOX9 and SOX8 in mammalian testis development. Int. J. Biochem. Cell Biol. 42: 433–436; 2010.

    Article  CAS  PubMed  Google Scholar 

  • Buzzard J. J.; Wreford N. G.; Morrison J. R. Marked extension of proliferation of rat Sertoli cells in culture using recombinant human FSH. Reproduction 124: 633–641; 2002.

    Article  CAS  PubMed  Google Scholar 

  • Cheng C. Y.; Mruk D. D. The blood-testis barrier and its implications for male contraception. Pharmacol. Rev. 64: 16–64; 2012.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cheng C. Y.; Wong E. W.; Yan H. H.; Mruk D. D. Regulation of spermatogenesis in the microenvironment of the seminiferous epithelium: new insights and advances. Mol. Cell. Endocrinol. 315: 49–56; 2010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chui K.; Trivedi A.; Cheng C. Y.; Cherbavaz D. B.; Dazin P. F.; Huynh A. L.; Mitchell J. B.; Rabinovich G. A.; Noble-Haeusslein L. J.; John C. M. Characterization and functionality of proliferative human Sertoli cells. Cell Transplant. 20: 619–635; 2011.

    Article  PubMed Central  PubMed  Google Scholar 

  • Dadoune J. P. New insights into male gametogenesis: what about the spermatogonial stem cell niche? Folia Histochem. Cytobiol. 45: 141–14; 2007.

    CAS  PubMed  Google Scholar 

  • Davidson A. G.; Bell R. J.; Lees G. E.; Murphy K. E. Isolation, culture, and characterization of canine Sertoli cells. In Vitro Cell. Dev. Biol. Anim. 43: 324–327; 2007.

    Article  CAS  PubMed  Google Scholar 

  • de Rooij D. G. The spermatogonial stem cell niche. Microsc. Res. Tech. 72: 580–585; 2009.

    Article  PubMed  Google Scholar 

  • de Rooij D. G.; Repping S.; van Pelt A. M. Role for adhesion molecules in the spermatogonial stem cell niche. Cell Stem Cell 3: 467–468; 2008.

    Article  PubMed  Google Scholar 

  • Dong W. Z.; Hua J. L.; Shen W. Z.; Dou Z. Y. In vitro production of haploid sperm cells from male germ cells of foetal cattle. Anim. Reprod. Sci. 118: 103–109; 2010.

    Article  CAS  PubMed  Google Scholar 

  • Dufour J. M.; Dass B.; Halley K. R.; Korbutt G. S.; Dixon D. E.; Rajotte R. V. Sertoli cell line lacks the immunoprotective properties associated with primary Sertoli cells. Cell Transplant. 17: 525–534; 2008.

    Article  PubMed  Google Scholar 

  • Frojdman K.; Harley V. R.; Pelliniemi L. J. Sox9 protein in rat sertoli cells is age and stage dependent. Histochem Cell Biol 113: 31–36; 2000.

    Article  CAS  PubMed  Google Scholar 

  • Hunter D.; Anand-Ivell R.; Danner S.; Ivell R. Models of in vitro spermatogenesis. Spermatogenesis 2: 32–43; 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  • Jakob S.; Lovell-Badge R. Sex determination and the control of Sox9 expression in mammals. FEBS J. 278: 1002–1009; 2011.

    Article  CAS  PubMed  Google Scholar 

  • Johnson L.; Thompson D. L.; Varner Jr. D. D. Role of Sertoli cell number and function on regulation of spermatogenesis. Anim. Reprod. Sci. 105: 23–51; 2008.

    Article  CAS  PubMed  Google Scholar 

  • Johnston D. S.; Olivas E.; DiCandeloro P.; Wright W. W. Stage-specific changes in GDNF expression by rat Sertoli cells: a possible regulator of the replication and differentiation of stem spermatogonia. Biol. Reprod. 85: 763–769; 2011.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kanatsu-Shinohara M.; Takehashi M.; Takashima S.; Lee J.; Morimoto H.; Chuma S.; Raducanu A.; Nakatsuji N.; Fassler R.; Shinohara T. Homing of mouse spermatogonial stem cells to germline niche depends on beta1-integrin. Cell Stem Cell 3: 533–542; 2008.

    Article  CAS  PubMed  Google Scholar 

  • Kato R.; Maeda T.; Akaike T.; Tamai I. Characterization of nucleobase transport by mouse Sertoli cell line TM4. Biol. Pharm. Bull. 32: 450–455; 2009.

    Article  CAS  PubMed  Google Scholar 

  • Kaur G.; Dufour J. M. Cell lines: valuable tools or useless artifacts. Spermatogenesis 2: 1–5; 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  • Kim Y. J.; Chung J. Y.; Lee S. G.; Kim J. Y.; Park J. E.; Kim W. R.; Joo B. S.; Han S. H.; Yoo K. S.; Yoo Y. H. et al. Arsenic trioxide-induced apoptosis in TM4 Sertoli cells: the potential involvement of p21 expression and p53 phosphorylation. Toxicology 285: 142–151; 2011.

    Article  CAS  PubMed  Google Scholar 

  • Komori S.; Kasumi H.; Sakata K.; Koyama K. The role of androgens in spermatogenesis. Soc. Reprod. Fertil. Suppl. 63: 25–30; 2007.

    CAS  PubMed  Google Scholar 

  • Lee D. Y.; Lee S. S.; Joo W. A.; Lee E. J.; Kim C. W. Analysis of differentially regulated proteins in TM4 cells treated with bisphenol A. Biosci. Biotechnol. Biochem. 68: 1201–1208; 2004.

    Article  CAS  PubMed  Google Scholar 

  • Liu L. H.; Shi X. F.; Luo F. H.; Yu B. Y.; Zhang Y.; Liu Y.; Wu Y. J. Long-term culture and spermatogenesis analysis of Sertoli cell/germ cell co-culture system from seminiferous tubules of rat testis. Chin. J. Cell Biol. 34: 454–460; 2012a (in Chinese with English abstract).

    Google Scholar 

  • Liu S.; Tang Z.; Xiong T.; Tang W. Isolation and characterization of human spermatogonial stem cells. Reprod. Biol. Endocrinol. 9: 141–149; 2011.

    Article  PubMed Central  PubMed  Google Scholar 

  • Liu T. D.; Yu B. Y.; Luo F. H.; Zhang X. L.; Wu S. C.; Liu L. H.; Wu Y. J. Gene expression profiling of rat testis development during the early post-natal stages. Reprod. Domest. Anim. 47: 724–731; 2012b.

    Article  CAS  PubMed  Google Scholar 

  • Menegazzo M.; Zuccarello D.; Luca G.; Ferlin A.; Calvitti M.; Mancuso F.; Calafiore R.; Foresta C. Improvements in human sperm quality by long-term in vitro co-culture with isolated porcine Sertoli cells. Hum. Reprod. 26: 2598–2605; 2011.

    Article  PubMed  Google Scholar 

  • Meng X.; de Rooij D. G.; Westerdahl K.; Saarma M.; Sariola H. Promotion of seminomatous tumors by targeted overexpression of glial cell line-derived neurotrophic factor in mouse testis. Cancer Res. 61: 3267–3271; 2001.

    CAS  PubMed  Google Scholar 

  • Mohamadi S. M.; Movahedin M.; Koruji S. M.; Jafarabadi M. A.; Makoolati Z. Comparison of colony formation in adult mouse spermatogonial stem cells developed in Sertoli and STO coculture systems. Andrologia 44(Suppl 1): 431–437; 2012.

    Article  PubMed  Google Scholar 

  • Mruk D. D.; Cheng C. Y. In search of suitable in vitro models to study germ cell movement across the blood-testis barrier. Spermatogenesis 2: 6–10; 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  • Nasiri Z.; Hosseini S. M.; Hajian M.; Abedi P.; Bahadorani M.; Baharvand H.; Nasr-Esfahani M. H. Effects of different feeder layers on short-term culture of prepubertal bovine testicular germ cells in-vitro. Theriogenology 77: 1519–1528; 2012.

    Article  CAS  PubMed  Google Scholar 

  • Raverdeau M.; Gely-Pernot A.; Feret B.; Dennefeld C.; Benoit G.; Davidson I.; Chambon P.; Mark M.; Ghyselinck N. B. Retinoic acid induces Sertoli cell paracrine signals for spermatogonia differentiation but cell autonomously drives spermatocyte meiosis. Proc. Natl. Acad. Sci. U. S. A. 109: 16582–16587; 2012.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rossi P.; Sette C.; Dolci S.; Geremia R. Role of c-kit in mammalian spermatogenesis. J. Endocrinol. Investig. 23: 609–615; 2000.

    Article  CAS  Google Scholar 

  • Sharpe R. M.; McKinnell C.; Kivlin C.; Fisher J. S. Proliferation and functional maturation of Sertoli cells, and their relevance to disorders of testis function in adulthood. Reproduction 125: 769–784; 2003.

    Article  CAS  PubMed  Google Scholar 

  • Skinner M. K.; Griswold M. D. Sertoli cell biology. Elsevier, Amsterdam, pp 19–40; 2005.

    Google Scholar 

  • Smith B. E.; Braun R. E. Germ cell migration across Sertoli cell tight junctions. Science 338: 798–802; 2012.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Steinberger A.; Heindel J. J.; Lindsey J. N.; Elkington J. S.; Sanborn B. M.; Steinberger E. Isolation and culture of FSH responsive Sertoli cells. Endocr. Res. Commun. 2: 261–272; 1975.

    Article  CAS  PubMed  Google Scholar 

  • Tabuchi Y.; Takahashi R.; Ueda M.; Obinata M. Development of a conditionally immortalized testicular Sertoli cell line RTS3-3 from adult transgenic rats harboring temperature-sensitive simian virus 40 large T-antigen gene. Cell Struct. Funct. 28: 87–95; 2003.

    Article  CAS  PubMed  Google Scholar 

  • Tarulli G. A.; Stanton P. G.; Lerchl A.; Meachem S. J. Adult sertoli cells are not terminally differentiated in the Djungarian hamster: effect of FSH on proliferation and junction protein organization. Biol. Reprod. 74: 798–806; 2006.

    Article  CAS  PubMed  Google Scholar 

  • Teng Y.; Xue W. J.; Ding X. M.; Feng X. S.; Xiang H. L.; Jiang Y. Z.; Tian P. X. Isolation and culture of adult Sertoli cells and their effects on the function of co-cultured allogeneic islets in vitro. Chin. Med. J. (Engl.) 118: 1857–1862; 2005.

    Google Scholar 

  • Wang Z. X.; Wreford N. G.; De Kretser D. M. Determination of Sertoli cell numbers in the developing rat testis by stereological methods. Int. J. Androl. 12: 58–64; 1989.

    Article  CAS  PubMed  Google Scholar 

  • Welsh M. J.; Wiebe J. P. Rat Sertoli cells: a rapid method for obtaining viable cells. Endocrinology 96: 618–624; 1975.

    Article  CAS  PubMed  Google Scholar 

  • Wessel G. M Accessorizing the testis. Enrico Sertoli and the "mother cell" of the testis. Mol. Reprod. Dev. 78: Fmi; 2011.

  • Wolski K. M.; Feig C.; Kirchhoff C.; Cameron D. F. Immortalized Sertoli cell lines sk11 and sk9 and binding of spermatids in vitro. Asian J. Androl. 9: 312–320; 2007.

    Article  CAS  PubMed  Google Scholar 

  • Wu Y. J.; Luo F. H.; Xue X. X.; Bou S. Long-term culture and spermatogenisis observation of germ cells from seminiferous tubules of cashmere goat. J. Inn. Mong. Univ. 36: 411–416; 2005 (in Chinese with English abstract).

    Google Scholar 

  • Zhang H. Z.; Zhang F. Q.; Li C. F.; Yi D.; Fu X. L.; Cui L. X. A cyanobacterial toxin, microcystin-LR, induces apoptosis of sertoli cells by changing the expression levels of apoptosis-related proteins. Tohoku J. Exp. Med. 224: 235–242; 2011a.

    Article  CAS  PubMed  Google Scholar 

  • Zhang M.; He Z.; Yuan H.; Zhu L.; Guo C.; Yin L.; Wu J.; Deng S.; Yuan L.; Wen L. DNA damage and decrease of cellular oxidase activity in piglet Sertoli cells exposed to arsanilic acid. J. Vet. Med. Sci. 73: 199–203; 2011b.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q. X.; Zhang X. Y.; Zhang Z. M.; Lu W.; Liu L.; Li G.; Cai Z. M.; Gui Y. T.; Chang C. Identification of testosterone-/androgen receptor-regulated genes in mouse Sertoli cells. Asian J. Androl. 14: 294–300; 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhang Y.; Luo F. H.; Wu Y. J. Co-culture and spermatogenisis observation of germ cells from rat seminiferous tubles. Chin. J. Androl. 21: 7–10; 2007 (in Chinese with English abstract).

    Google Scholar 

  • Zhang Y.; Su H. M.; Luo F. H.; Wu S.; Liu L. H.; Liu T. D.; Yu B. Y.; Wu Y. J. E-cadherin can be expressed by a small population of rat undifferentiated spermatogonia in vivo and in vitro. In Vitro Cell Dev. Biol. Anim. 47: 593–600; 2011c.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Chunhui Plan cooperative research projects of the China Ministry of Education (grant No. Z2007-1-01036), Natural Science Foundation of Inner Mongolia, China (grant No. 2009ZD05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingji Wu.

Additional information

Editor: T. Okamoto

Huimin Su and Fenhua Luo contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, H., Luo, F., Bao, J. et al. Long-term culture and analysis of cashmere goat Sertoli cells. In Vitro Cell.Dev.Biol.-Animal 50, 918–925 (2014). https://doi.org/10.1007/s11626-013-9648-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-013-9648-7

Keywords

Navigation