Skip to main content
Log in

Wolbachia from the planthopper Laodelphax striatellus establishes a robust, persistent, streptomycin-resistant infection in clonal mosquito cells

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

The obligate intracellular bacterium, Wolbachia pipientis (Rickettsiales: Anaplasmataceae), distorts reproduction of its arthropod hosts to facilitate invasion of naïve populations. This property makes Wolbachia an attractive “gene drive” agent with potential applications in the control of insect vector populations. Genetic manipulation of Wolbachia will require in vitro systems for its propagation, genetic modification, amplification, and introduction into target insects. Here we show that Wolbachia from the planthopper, Laodelphax striatellus, establishes a robust infection in clonal C7-10 Aedes albopictus mosquito cells. Infected cells, designated C/wStr, expressed radiolabeled proteins that were enriched in cells grown in the absence of antibiotics that inhibit Wolbachia, relative to cultures grown in medium containing tetracycline and rifampicin. Using mass spectrometry, we verified that tryptic peptides from an upregulated 24 kDa band predominantly represented proteins encoded by the Wolbachia genome, including the outer surface protein, Wsp. We further showed that resistance of Wolbachia to streptomycin is associated with a K42R mutation in Wolbachia ribosomal protein S12, and that the pattern of amino acid substitutions in ribosomal protein S12 shows distinct differences in the closely related genera, Wolbachia and Rickettsia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  • Dulbecco R.; Vogt M. Plaque formation and isolation of pure lines with poliomyelitis virus. J. Exp. Med. 99: 167–182; 1954.

    Article  PubMed  CAS  Google Scholar 

  • Fallon A. M. Cytological properties of an Aedes albopictus mosquito cell line infected with Wolbachia strain wAlbB. In. Vitro. Cell. Dev. Biol. Anim. 44: 154–161; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Fallon A. M.; Hellestad V. J. Standardization of a colorimetric method to quantify growth and metabolic activity of Wolbachia-infected mosquito cells. In. Vitro. Cell. Dev. Biol. Anim. 44: 351–356; 2008.

    Article  PubMed  Google Scholar 

  • Fallon A. M.; Kurtti T. J. Cultured cells as a tool for analysis of gene expression. In: Marquardt W. C. (ed) Biology of disease vectors. 2nd ed. Elsevier, New York, pp 539–549; 2005.

    Google Scholar 

  • Fallon A. M.; Witthuhn B. A. Proteasome activity in a naïve mosquito cell line infected with Wolbachia pipientis wAlbB. In. Vitro. Cell. Dev. Biol. Anim. 45: 460–466; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Funatsu G.; Yaguchi M.; Wittmann-Liebold B. Primary structure of protein S12 from the small Escherichia coli ribosomal subunit. FEBS Lett. 73: 12–17; 1977.

    Article  PubMed  CAS  Google Scholar 

  • Gerenday A.; Fallon A. M. Cell cycle parameters in Aedes albopictus mosquito cells. In. Vitro. Cell. Dev. Biol. Anim. 32: 307–312; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Gregory S. T.; Cate J. H.; Dahlberg A. E. Streptomycin-resistant and streptomycin-dependent mutants of the extreme thermophile Thermus thermophilus. J. Mol. Biol. 309: 333–338; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Hermans P. G.; Hart C. A.; Trees A. J. In vitro activity of antimicrobial agents against the endosymbiont Wolbachia pipientis. J. Antimicrobial. Chemother. 47: 659–663; 2001.

    Article  CAS  Google Scholar 

  • Hertig M. The Rickettsia, Wolbachia pipientis (gen et sp. n.) and associated inclusions of the mosquito, Culex pipiens. Parasitology 28: 453–486; 1936.

    Article  Google Scholar 

  • Hilgenboecker K.; Hammerstein P.; Schlattmann P.; Telschow A.; Werren J. H. How many species are infected with Wolbachia?—a statistical analysis of current data. FEMS Microbiol. Lett. 281: 215–220; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Keller A.; Nesvizhskii A. I.; Kolker E.; Aebersold R. Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal. Chem. 74: 5383–5392; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685; 1970.

    Article  PubMed  CAS  Google Scholar 

  • Mavingui P.; Valiente Moro C.; Tran-Van V.; Wisniewski-Dyé F.; Raquin V.; Minard G.; Tran F. H.; Voronin D.; Rouy Z.; Bustos P.; Lozano L.; Barbe V.; González V. Whole-genome sequence of Wolbachia strain wAlbB, an endosymbiont of tiger mosquito vector Aedes albopictus. J. Bacteriol. 194: 1840; 2012.

    Article  PubMed  CAS  Google Scholar 

  • Moreira L. A.; Iturbe-Ormaetxe I.; Jeffery J. A.; Lu G.; Pyke A. T.; Hedges L. M. et al. A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium. Cell 139: 1268–1278; 2009.

    Article  PubMed  Google Scholar 

  • Nesvizhskii A. I.; Keller A.; Kolker E.; Aebersold R. A statistical model for identifying proteins by tandem mass spectrometry. Anal. Chem. 75: 4646–4658; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Noda H.; Miyoshi T.; Koizumi Y. In vitro cultivation of Wolbachia in insect and mammalian cell lines. In. Vitro. Cell. Dev. Biol. Anim. 38: 423–427; 2002.

    Article  PubMed  Google Scholar 

  • O’Neill S. L.; Pettigrew M. M.; Sinkins S. P.; Braig H. R.; Andreadis T. G.; Tesh R. B. In vitro cultivation of Wolbachia pipientis in an Aedes albopictus cell line. Insect. Mol. Biol. 6: 33–39; 1997.

    Article  PubMed  Google Scholar 

  • Oxman E.; Bonventre P. F. Facilitated uptake of streptomycin by Kupffer cells during phagocytosis. Nature 213: 294–295; 1967.

    Article  PubMed  CAS  Google Scholar 

  • Sharma D.; Cukras A. R.; Rogers E. J.; Southworth D. R.; Green R. Mutational analysis of S12 protein and implications for the accuracy of decoding by the ribosome. J. Mol. Biol. 374: 1065–1076; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Shih K. M.; Gerenday A.; Fallon A. M. Culture of mosquito cells in Eagle’s medium. In. Vitro. Cell. Dev. Biol. Anim. 34: 629–630; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Sinkins S. P.; Gould F. Gene drive systems for insect disease vectors. Nat. Rev. Genet. 7: 427–435; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Stouthamer R.; Breeuwer J. A.; Hurst G. D. Wolbachia pipientis: Microbial manipulator of arthropod reproduction. Annu. Rev. Microbiol. 53: 71–102; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Williams K. P.; Sobral B. W.; Dickerman A. W. A robust species tree for the Alphaproteobacteria. J. Bacteriol. 189: 4578–4586; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Wu M.; Sun L. V.; Vamathevan J.; Riegler M.; Deboy R.; Brownlie J. C. et al. Phylogenomics of the reproductive parasite Wolbachia pipientis wMel: A streamlined genome overrun by mobile genetic elements. PloS. Biol. 2: E69; 2004.

    Article  PubMed  Google Scholar 

  • Xi Z.; Khoo C. C. H.; Dobson S. L. Wolbachia establishment and invasion in an Aedes aegypti laboratory population. Science 310: 326–328; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Yen J. H.; Barr A. R. New hypothesis of the cause of cytoplasmic incompatibility in Culex pipiens L. Nature 232: 657–658; 1971.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grant AI081322 and by the University of Minnesota Agricultural Experiment Station, St. Paul, MN. Mass spectrometry analysis was performed at the University of Minnesota Center for Mass Spectrometry and Proteomics (supporting agencies are listed at http://www.cbs.umn.edu/msp/about). We thank John Beckmann and Grace Li for helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Fallon.

Additional information

Editor: T. Okamoto

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fallon, A.M., Baldridge, G.D., Higgins, L.A. et al. Wolbachia from the planthopper Laodelphax striatellus establishes a robust, persistent, streptomycin-resistant infection in clonal mosquito cells. In Vitro Cell.Dev.Biol.-Animal 49, 66–73 (2013). https://doi.org/10.1007/s11626-012-9571-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-012-9571-3

Keywords

Navigation