Skip to main content

Advertisement

Log in

Influence of types and charges of exchangeable cations on ciprofloxacin sorption by montmorillonite

  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

As one of the most important soil components, montmorillonite plays a vital role in transport and retention of organic pollutants in soils. Ciprofloxacin (CIP), an antibiotic of fluoroquiolones, has been frequently detected in water and soil environments due to its wide use in human and veterinary medicine. In this study, the adsorption of CIP onto different homoionic montmorillonite such as Na-, Ca- and Al-MMT was investigated, and the influence of types and charges of exchangeable cations in the interlayer of montmorillonite on CIP adsorption was evaluated. The results showed that different homoionic montmorillonite exhibited different sorption capacity of CIP. At pH 3, the sorption capacity of CIP decreased in the order Na-MMT > Ca-MMT > Al-MMT, following the lyotropic series. When solution pH increased to 11, the sorption capacity of CIP followed the order Ca-MMT > Al-MMT > Na-MMT. Accompanying CIP adsorption on Ca-MMT, a certain amount of Ca2+ was released into solution. Compared to pH 3, the lower Ca concentration in solution at pH 11 indicated that the adsorption of CIP on Ca-MMT at strong alkaline pH was no longer via cation exchange, and surface complexation or cation bridging might contribute to CIP adsorption. The adsorption of CIP on Na- and Ca-MMT at pH 3 and 11 resulted in the expansion of d-spacing, indicative of intercalation of CIP into the interlayer space of the montmorillonite. However, a decrease of d-spacing was observed when CIP adsorbed on Al-MMT at pH 11, which might be attributed to the dissolution of Al-CIP complex formed between CIP and Al3+ in the interlayer of montmorillonite. The results suggest that the types and charges of exchangeable cations in the interlayer of montmorillonite play an important role in CIP adsorption on montmorillonite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kumar K, Gupta S C, Chander Y, et al. Antibiotic Use in Agriculture and Its Impact on the Terrestrial Environment[J]. Adv. Agron., 2005, 87:1–54

    Article  CAS  Google Scholar 

  2. Kolpin D W, Furlong E T, Meyer M T, et al. Pharmaceuticals, Hormones, and Other Organic Wastewater Contaminants in US Streams, 1999–2000: A National Reconnaissance[J]. Environ. Sci. Technol., 2002, 36:1 202–1 211

    CAS  Google Scholar 

  3. Boxall A B A, Kolpin D W, Halling-Sorensen B, et al. Are Veterinary Medicines Causing Environmental Risks[J]? Environ. Sci. Technol., 2003, 37:286A–294A

    Article  CAS  Google Scholar 

  4. Giger W, Alder A C, Golet E M, et al. Occurrence and Fate of Antibiotics as Trace Contaminants in Wastewaters, Sewage Sludges, and Surface Waters[J]. Chimia, 2003, 57:485–491

    Article  CAS  Google Scholar 

  5. Kummerer K. Resistance in the Environment[J]. J. Antimicrob. Chemother., 2004, 54:311–320

    Article  CAS  Google Scholar 

  6. Xia K, Bhandari A, Das K, et al. Occurrence and Fate of Pharmaceuticals and Personal Care Products (PPCPs) in Biosolids[J]. J. Environ. Qual., 2005, 34:91–104

    Article  CAS  Google Scholar 

  7. Heberer T. Occurrence, Fate, and Removal of Pharmaceutical Residues in the Aquatic Environment: A Review of Recent Research Data[J]. Toxicol. Lett., 2002, 131:5–17

    Article  CAS  Google Scholar 

  8. Karthikeyan K G, Meyer M T. Occurrence of Antibiotics in Wastewater Treatment Facilities in Wisconsin, USA[J]. Sci. Total Environ., 2006, 36:196–207

    Google Scholar 

  9. Golet E M, Xifra I, Siegrist H, et al. Environmental Exposure Assessment of Fluoroquinolone Antibacterial Agents from Sewage to Soil[J]. Environ. Sci. Technol., 2003, 37:3 243–3 249

    Article  CAS  Google Scholar 

  10. Miao X H, Bishay F, Chen M, et al. Occurrence of Antimicrobials in the Final Effluents of Wastewater Treatment Plants in Canada[J]. Environ. Sci. Technol., 2004, 38:3 533–3 541

    Article  CAS  Google Scholar 

  11. Martins A F, Vasconcelos T G, Hariques D M, et al. Concentration of Ciprofloxacin in Brazilian Hospital Effluent and Preliminary Risk Assessment: A Case Study[J]. Clean, 2008, 36:264–269

    CAS  Google Scholar 

  12. Halling-Sorensen B, Holten-Lützhøft H C, Andersen H R, et al. Environmental Risk Assessment of Antibiotics: Comparison of Mecillinam, Trimethoprim and Ciprofloxacin[J]. J. Antimicrob. Chemother., 2000, 46:53–58

    Article  CAS  Google Scholar 

  13. Nowara A, Burhenne J, Spiteller M. Banding of Fluoroquinolone Carboxylic Acid Derivatives to Clay Minerals[J]. J. Agric. Food Chem., 1997, 45:1 459–1 463

    Article  CAS  Google Scholar 

  14. Gu C, Karthikeyan K G. Sorption of the Antimicrobial Ciprofloxacin to Aluminum and Iron Hydrous Oxides[J]. Environ. Sci. Technol., 2005, 39:9 166–9 173

    CAS  Google Scholar 

  15. Vasudevan D, Bruland G L, Torrance B S, et al. pH-dependent Ciprofloxacin Sorption to Soils: Interaction Mechanisms and Soil Factors Influencing Sorption[J]. Geoderma, 2009, 151:68–76

    Article  CAS  Google Scholar 

  16. Mackay A A, Seremet D E. Probe Compounds to Quantify Cation Exchange and Complexation Interactions of Ciprofloxacin with Soils[J]. Environ. Sci. Technol., 2008, 42:8 270–8 276

    Article  CAS  Google Scholar 

  17. Carrasquillo A J, Bruland G L, Mackay A A, et al. Sorption of Ciprofloxacin and Oxytetracycline Zwitterions to Soils and Soil Minerals: Influence of Compound Structure[J]. Environ. Sci. Technol., 2009, 42:7 634–7 642

    Google Scholar 

  18. Wu Q F, Li Z, Hong H L, et al. Adsorption and Intercalation of Ciprofloxacin on Montmorillonite[J]. Appl. Clay Sci., 2010, 50:204–211

    Article  CAS  Google Scholar 

  19. Wang C J, Li Z, Jiang W T, et al. Adsorption and Intercalation Properties of Antibiotic Ciprofloxacin on Montmorillonite[J]. J. Hazard. Mater., 2010, 183:309–314

    Article  CAS  Google Scholar 

  20. Borden B, Giese R F. Baseline Studies of the Clay Minerals Society Source Clays: Cation Exchange Capacity Measurements by the Ammonia-electrode Method[J]. Clays Clay Miner., 2001, 49:444–445

    Article  CAS  Google Scholar 

  21. Dogan A U, Dogan M, Onal M, et al. Baseline Studies of the Clay Minerals Society Source Clays: Specific Surface Area by the Brunauer Emmett Teller (BET) Method[J]. Clays Clay Miner, 2006, 54:62–66

    Article  CAS  Google Scholar 

  22. Zhang H, Huang C H. Adsorption and Oxidation of Fluoroquinolone Antibacyerial Agents and Structurally Related Amines with Goethite[J]. Chemosphere, 2007, 66:1 502–1 512

    CAS  Google Scholar 

  23. Carmosini N, Lee L S. Ciprofloxacin Sorption by Dissolved Organic Carbon from Reference and Bio-waste Materials[J]. Chemosphere, 2009, 77:813–820

    Article  CAS  Google Scholar 

  24. Ertl P, Rohde B, Selzer P. Fast Calculation of Molecular Polar Surface Area as a Sum of Fragment-based Contributions and Its Application to the Predication of Drug Transport[J]. J. Med. Chem., 2000, 43:3 714–3 717

    Article  CAS  Google Scholar 

  25. Figueroa R A, Leonard A, Mackay A A. Modeling Tertacycline Antibiotic Sorption to Clays[J]. Environ. Sci. Technol., 2004, 38:476–483

    Article  CAS  Google Scholar 

  26. Carrasquillo A J, Bruland G L, Mackay A A, et al. Sorption of Ciprofloxacin and Oxytetracycline Zwitterions to Soils and Soil Minerals: Influence of Compound Structure[J]. Environ. Sci. Technol., 2009, 42:7 634–7 642

    Google Scholar 

  27. Trivedi P, Vasudevan D. Spectroscopic Investigation of Ciprofloxacin Speciation at the Goethite-water Interface[J]. Environ. Sci. Technol., 2007, 41:3 153–3 158

    Article  CAS  Google Scholar 

  28. Saka E E, Güler C. The Effect of Electrolyte Concentration, Ion Species and pH on the Zeta Potential and Electrokinetic Charge Density of Montmorillonite[J]. Clay Min., 2006, 41:853–861

    Article  CAS  Google Scholar 

  29. Li Z, Gallus L. Surface Configuration of Sorbed Hexadecyltrimethy Lammonium on Kaolinite as Indicated by Surfactant and Counterion Sorption, Cation Desorption, and FTIR[J]. Colloids and Surfaces A, 2005, 264:61–67

    Article  CAS  Google Scholar 

  30. Li Z, Schulz L, Ackley C, et al. Adsorption of Tetracycline on Kaolinite with pH-dependent Surface Charges[J]. J. Colloid Interface Sci., 2010, 35:254–260

    Article  CAS  Google Scholar 

  31. Gao J, Pedersen J A. Adsorption of Sulfonamide Antimicrobial Agents to Clay Minerals[J]. Environ. Sci. Technol., 2005, 39:9 509–9 516

    Article  CAS  Google Scholar 

  32. Neugebauer U, Szeghalmi A, Schmitt M, et al. Vibrational Spectroscopic Characterization of Fluoroquinolones, Spectrochim[J]. Acta Part A, 2005, 61:1 505–1 517

    Article  CAS  Google Scholar 

  33. Madejová J, Komadel P. Baseline Studies of the Clay Minerals Society Source Clays: Infrared Methods[J]. Clay Clay Miner., 2001, 49:410–432

    Article  Google Scholar 

  34. Goyne K W, Chorover J, Kubicki J D, et al. Sorption of the Antibiotic Ofloxacin to Mesoprous and Nonporous Alumina and Silica[J]. J. Colloid interface Sci., 2005, 283:160–170

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingfeng Wu  (吴青峰).

Additional information

Funded by the Key Project of Chinese Ministry of Education (No. 107076), and Wisconsin Groundwater Research Council to Z. Li

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Q., Li, Z. & Hong, H. Influence of types and charges of exchangeable cations on ciprofloxacin sorption by montmorillonite. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 27, 516–522 (2012). https://doi.org/10.1007/s11595-012-0495-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-012-0495-2

Key words

Navigation