Skip to main content
Log in

Distributionally robust chance-constrained games: existence and characterization of Nash equilibrium

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

We consider an n-player finite strategic game. The payoff vector of each player is a random vector whose distribution is not completely known. We assume that the distribution of a random payoff vector of each player belongs to a distributional uncertainty set. We define a distributionally robust chance-constrained game using worst-case chance constraint. We consider two types of distributional uncertainty sets. We show the existence of a mixed strategy Nash equilibrium of a distributionally robust chance-constrained game corresponding to both types of distributional uncertainty sets. For each case, we show a one-to-one correspondence between a Nash equilibrium of a game and a global maximum of a certain mathematical program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adler, I.: The equivalence of linear programs and zero-sum games. Int. J. Game Theory 42(1), 165–177 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bazaraa, M., Sherali, H., Shetty, C.: Nonlinear programming theory and algorithms. Wiley, USA, Third edn (2006)

  3. Blau, R.A.: Random-payoff two person zero-sum games. Operat. Res. 22(6), 1243–1251 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cassidy, R.G., Field, C.A., Kirby, M.J.L.: Solution of a satisficing model for random payoff games. Manage. Sci. 19(3), 266–271 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  5. Charnes, A., Cooper, W.W.: Deterministic equivalents for optimizing and satisficing under chance constraints. Operat. Res. 11(1), 18–39 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  6. Charnes, A., Kirby, M.J.L., Raike, W.M.: Zero-zero chance-constrained games. Theory Prob. Appl. 13(4), 628–646 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cheng, J., Delage, E., Lisser, A.: Distributionally robust stochastic knapsack problem. SIAM J. Optim. 24(3), 1485–1506 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cheng, J., Leung, J., Lisser, A.: Random-payoff two-person zero-sum game with joint chance constraints. Euro. J. Operat. Res. 252(1), 213–219 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cheng, J., Lisser, A.: A second-order cone programming approach for linear programs with joint probabilistic constraints. Operat. Res. Lett. 40(5), 325–328 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Couchman, P., Kouvaritakis, B., Cannon, M., Prashad, F.: Gaming strategy for electric power with random demand. IEEE Trans. Power Syst. 20(3), 1283–1292 (2005)

    Article  Google Scholar 

  11. Dantzig, G.B.: A proof of the equivalence of the programming problem and the game problem. In: Koopmans, T.C. (ed.) Activity analysis of production and allocation, pp. 330–335. Wiley, New York (1951)

    Google Scholar 

  12. DeMiguel, V., Xu, H.: A stochastic multiple leader Stackelberg model: analysis, computation, and application. Operat. Res. 57(5), 1220–1235 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. El-Ghaoui, L., Oks, M., Oustry, F.: Worst-case value-at-risk and robust portfolio optimization: a conic programming approach. Operat. Res. 51(4), 543–556 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hayashi, S., Yamashita, N., Fukushima, M.: Robust Nash equilibria and second-order cone complementarity problems. J. Nonlin. Conv. Anal. 6(2), 283–296 (2005)

    MathSciNet  MATH  Google Scholar 

  15. Jadamba, B., Raciti, F.: Variational inequality approach to stochastic Nash equilibrium problems with an application to Cournot oligopoly. J. Optim. Theory Appl. 165(3), 1050–1070 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kakutani, S.: A generalization of Brouwer’s fixed point theorem. Duke Math. J. 8(3), 457–459 (1941)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lee, K.H., Baldick, R.: Solving three-player games by the matrix approach with application to an electric power market. IEEE Trans. Power Syst. 18(4), 1573–1580 (2003)

    Article  Google Scholar 

  18. Lemke, C.E., Howson, J.T.: Equilibrium points of bimatrix games. J. Soc. Indust. Appl. Math. 12(2), 413–423 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lepore, J.J.: Cournot outcomes under Bertrand-Edgeworth competition with demand uncertainty. J. Math. Econ. 48(3), 177–186 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mangasarian, O.L., Stone, H.: Two-person nonzero-sum games and quadratic programming. J. Math. Anal. Appl. 9(3), 348–355 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mazadi, M., Rosehart, W.D., Zareipour, H., Malik, O.P., Oloomi, M.: Impact of wind integration on electricity markets: a chance-constrained Nash Cournot model. Int. Trans. Elect. Energy Syst. 23(1), 83–96 (2013)

    Article  Google Scholar 

  22. Nash, J.F.: Equilibrium points in n-person games. Proceed. Nat. Acad. Sci. 36(1), 48–49 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  23. Neumann, J.V.: On the theory of games. Math. Annalen 100(1), 295–320 (1928)

    Article  MathSciNet  Google Scholar 

  24. Nishimura, R., Hayashi, S., Fukushima, M.: Semidefinite complementarity reformulation for robust Nash equilibrium problems with Euclidean uncertainty sets. J. Global Optim. 53(1), 107–120 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Polik, I., Terlaky, T.: A survey of the S-lemma. SIAM Rev. 49(3), 371–418 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Prékopa, A.: Stochastic programming. Springer, Netherlands (1995)

    Book  MATH  Google Scholar 

  27. Ravat, U., Shanbhag, U.V.: On the characterization of solution sets of smooth and nonsmooth convex stochastic Nash games. SIAM J. Optim. 21(3), 1168–1199 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Rockafellar, R.T.: Convex analysis. Princeton University Press (1970)

  29. Shapiro, A.: Semi-Infinite Programming: Recent Advances, chap. On duality theory of conic linear problems, pp. 135–165. Springer US, Boston, MA (2001)

  30. Singh, V.V., Jouini, O., Lisser, A.: Existence of Nash equilibrium for chance-constrained games. Oper. Res. Lett. 44(5), 640–644 (2016)

    Article  MathSciNet  Google Scholar 

  31. Son, Y.S., Baldick, R., Lee, K.H., Siddiqi, S.: Short-term electricity market auction game analysis: uniform and pay-as-bid pricing. IEEE Trans. Power Syst. 19(4), 1990–1998 (2004)

    Article  Google Scholar 

  32. Song, T.: Systems and management science by extremal methods, chap. On random payoff matrix games, pp. 291–308. Springer US, Boston, MA (1992)

  33. Valenzuela, J., Mazumdar, M.: Cournot prices considering generator availability and demand uncertainty. IEEE Trans. Power Syst. 22(1), 116–125 (2007)

    Article  Google Scholar 

  34. Wambach, A.: Bertrand competition under cost uncertainty. Int. J. Indust. Organ. 17(7), 941–951 (1999)

    Article  Google Scholar 

  35. Wolf, D.D., Smeers, Y.: A stochastic version of a Stackelberg-Nash-Cournot equilibrium model. Manage. Sci. 43(2), 190–197 (1997)

    Article  MATH  Google Scholar 

  36. Xu, H., Zhang, D.: Stochastic Nash equilibrium problems: sample average approximation and applications. Comput. Optim. Appl. 55(3), 597–645 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This research was supported by Fondation DIGITEO, SUN Grant No. 2014-0822D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikas Vikram Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, V.V., Jouini, O. & Lisser, A. Distributionally robust chance-constrained games: existence and characterization of Nash equilibrium. Optim Lett 11, 1385–1405 (2017). https://doi.org/10.1007/s11590-016-1077-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-016-1077-6

Keywords

Navigation