Skip to main content
Log in

Enhancement of electrochemical properties of Ca3Co4O9 as anode materials for lithium-ion batteries by transition metal doping

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Misfit-layered calcium cobaltites (Ca3Co4O9, Ca3Co3.9Fe0.1O9, and Ca3Co3.9Mn0.1O9), as anode materials for lithium-ion batteries, were synthesized by a simple hydro-decomposition method. All synthesized samples do not show any impurity phase. They exhibited plate-like particle with the particle size of 1–2 μm. The specific capacities of doped samples showed higher electrochemical performance compared to the undoped sample. After charge/discharge of 50 cycles, the specific capacities of Ca3Co4O9, Ca3Co3.9Fe0.1O9, and Ca3Co3.9Mn0.1O9 were 343, 562, and 581 mAh g−1, respectively. The doped samples showed an increase of over 60% compared to the undoped sample. The cyclic voltammetry profile of the doped samples showed the enhanced reactivity corresponding to their improved electrochemical performance. The capacity improvement of doped samples resulted from the metal oxide/Li conversion reactions, volume change, and high reactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wang F, Wang J, Ren H, Tang H, Yu R, Wang D (2013) Multi-shelled LiMn2O4 hollow microspheres as superior cathode materials for lithium-ion batteries. Inorg Chem Front 3:265

  2. Scrosati B (2000) Recent advances in lithium ion battery materials. Electrochim Acta 45:2461

  3. Li X, Shang X, Li D, Yue H, Wang S, Qiao L, He D (2014) Facile synthesis of porous MnO microspheres for high-performance lithium-ion batteries. Part Part Syst Charact 31:1001

  4. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon J-M (2000) Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407:496

  5. Taberna PL, Mitra S, Poizot P, Simon P, Tarason J-M (2006) High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nat Mater 5:567

  6. Li X, Li D, Qiao L, Wang X, Sun X, Wang P, He D (2012) Interconnected porous MnO nanoflakes for high-performance lithium ion battery anodes. J Mater Chem 22:9189

  7. Reddy MV, Prithvi G, Loh KP, Chowdari BVR (2014) Li storage and impedance spectroscopy studies on Co3O4, CoO, and CoN for Li-ion batteries. Appl Mater Interfaces 6:680

  8. Xiao Y, Li X, Zai J, Wang K, Gong Y, Li B, Han Q, Qian X (2014) CoFe2O4-graphene nanocomposites synthesized through an ultrasonic method with enhanced performances as anode materials for Li-ion batteries. Nano Micro Lett 6:307

  9. Jiang S, Shi T, Long H, Sun Y, Zhou W, Tang Z (2014) High-performance binder-free supercapacitor electrode by direct growth of cobalt-manganese composite oxide nansostructures on nickel foam. Nanoscale Res Lett 9:492

  10. Wang J, Tang H, Zhang L, Ren H, Yu R, Jin Q, Qi J, Mao D, Yang M, Wang Y, Liu P, Zhang Y, Wen Y, Gu L, Ma G, Su Z, Tang Z, Zhao H, Wang D (2016) Multi-shelled metal oxides prepared via an anion-adsorption mechanism for lithium-ion batteries. Nat Energy 1:16050

  11. Wang J, Yang N, Tang H, Dong Z, Jin Q, Yang M, Kisailus D, Zhao H, Tang Z, Wang D (2013) Accurate control of multishelled Co3O4 hollow microspheres as high-performance anode materials in lithium-ion batteries. Angew Chem Int Ed 52:1

  12. Xu S, Hessel CM, Ren H, Yu R, Jin Q, Yang M, Zhao H, Wang D (2014) α-Fe2O3 multi-shelled hollow microspheres for lithium ion battery anodes with superior capacity and charge retention. Energy Environ Sci 7:632

  13. Ren H, Yu R, Wang J, Jin Q, Yang M, Mao D, Kisailus D, Zhao H, Wang D (2014) Multishelled TiO2 hollow microspheres as anodes with superior revesible capacity for lithium ion batteries. Nano Lett 14:6679

  14. Ren H, Sun J, Yu R, Yang M, Gu L, Liu P, Zhao H, Kisailus D, Wang D (2016) Controllable synthesis of mesostructures from TiO2 hollow to porous nanospheres with superior rate performance for lithium ion batteries. Chem Sci 7:793

  15. Qi J, Lai X, Wang J, Tang H, Ren H, Yu Y, Jin Q, Zhang L, Yu R, Ma G, Su Z, Zhao H, Wang D (2015) Multi-shelled hollow micro-/nanostructrues. Chem Soc Rev 44:6749

  16. Masset AC, Michel C, Maignan A, Hervieu M, Toulemonde O, Studer F, Raveau B, Hejtmanek J (2000) Misfit-layered cobaltite with an anisotropic giant magnetoresistance: Ca3Co4O9. Phys Rev B 62:166

  17. Nong NV, Pryds N, Linderoth S, Ohtaki M (2011) Enhancement of the thermoelectric performance of p-type layered oxide Ca3Co4O9+δ through heavy doping and metallic nanoinclusions. Adv Mater 23:2484

  18. Prasoetsopha N, Pinitsoontorn S, Amornkitbamrung V (2012) Synthesis and thermoelectric properties of Ca3Co4O9 prepared by a simple thermal hydro-decomposition method. Electron Mater Lett 8:305

  19. Prasoetsopha N, Pinitsoontorn S, Bootchanont A, Kidlhunthod P, Srepusharawoot P, Khamwanna T, Amornkitbamrung V, Kurosaki K, Yamanaka S (2013) Local structure of Fe in Fe-doped misfit-layered calcium cobaltite: An X-ray absorption spectroscopy study. J Solid State Chem 204:257

  20. Miyazaki Y (2004) Crystal structure and thermoelectric properties of the misfit- layered cobalt oxides. Solid State Ionics 172:463

  21. Rebola A, Klie RF, Zapol P, Ogut S (2012) Lattice and transport properties of the misfit-layered oxide thermoelectric Ca3Co4O9 from first principles. Phys Rev B 85:155132

  22. Pinitsoontorn S, Lerssongkram N, Harnwunggmoung A, Kurosaki K, Yamanaka S (2010) Synthesis, mechanical and magnetic properties of transition metals-doped Ca3Co3.8M0.2O9. J Alloys Compd 503:431

  23. Prasoetsopha N, Pinitsoontorn S, Thongbai P, Yamwong T (2013) Giant dielectric behavior observed in Ca3Co4O9 ceramic. Electron Mater Lett 9:347

  24. Kim D-W, Ko Y-D, Park J-G, Kim B-K (2007) Formation of lithium driven active/inactive nanocomposite electrodes based on Ca3Co4O9 nanoplates. Angew Chem Int Ed 46:6654

  25. Zhu X-B, Chou S-L, Wang L, Li Q, Shi D-Q, Wang J-Z, Chen Z-X, Sun Y-P, Liu H-K, Doua S-X (2009) Self-oriented Ca3Co4O9 thin film as an anode material for enhanced cycling stability of lithium-ion batteries. Electrochem Solid State Lett 12:A176

  26. Mei T, Zhang J, Wang L, Xing Z, Zhu Y, Qian Y (2012) Preparation of mixed oxides Ca9Co12O28 and their eletrochemical properties. Mater Lett 82:1

  27. Ko Y-D, Kang J-G, Choi KJ, Park J-G, Ahn J-P, Chung KY, Nam K-W, Yoon W-S, Kim D-W (2009) High rate capabilities induced by multi-phasic nanodomains in iron-substituted calcium cobaltite electrodes. J Mater Chem 19:1829

  28. Cao J, Liu H, Xie J, Cao G, Zhao X (2010) Effect of K-doping on the electrochemical performance of Ca3Co4O9 anode for Li-ion batteries. J Mater Sci Technol 26:669

  29. Prasoetsopha N, Pinitsoontorn S, Kamwanna T, Meethong N, Fan S, Tan LP, Sun T, Hng HH (2015) Improvement of electrochemical properties of misfit-layered Ca3Co4O9 as anode materials for lithium-ion batteries by Cr doping. J Solid State Electrochem 19:1197

  30. Chen JL, Liu YS, Liu C-J, Huang L-C, Dong CL, Chen SS, Chang CL (2009) Effect of Mn doping on the physical properties of misfit-layered Ca3Co4O9+δ. J Phys D App Phys 42:135418

  31. Shannon R (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chaleogenides. Acta Crystallogr A 32:751

  32. Liu CJ, Chen JL, Huang LC, Lin ZR, Chang CL (2007) X-ray absorption spectroscopy studies of Fe-doped misfit-layeered Ca3Co4-xFexO9+δ. J Appl Phys 102:014908

  33. Sharma N, Shaju KM, Rao GVS, Chowdari BVR (2004) Mixed oxides Ca2Fe2O5 and Ca2Co2O5 as anode materials for Li-ion batteries. Electrochim Acta 49:1035

  34. Fu C, Li G, Luo D, Huang X, Zheng J, Li L (2014) One-step calcination-free synthesis of multicomponent spinel assembled microspheres for high-performance anodes of li-ion batteries: a case study of MnCo2O4. ACS Appl Mater Interfaces 6:2439

  35. Li G, Xu L, Zhai Y, Hou Y (2015) Fabrication of hierarchical porous MnCo2O4 and CoMn2O4 microspheres composed of polyhedral nanoparticles as promising anodes for long-life LIBs. J Mater Chem A 3:14298

  36. Ge X, Gu CD, Wang XL, Tu JP (2014) Correlation between microstructure and electrochemical behavior of the mesoporous Co3O4 sheet and its ionothermal synthesized hydrotalcite-like α-Co(OH)2 precursor. J Phys Chem C 118:911

  37. Xiong QQ, Tu JP, Lu Y, Chen J, Yu YX, Qiao YQ, Wang XL, Gu CD (2012) Synthesis of hierarchical hollow-structured single-crystalline magnetite (Fe3O4) microspheres: The highly powerful storage versus lithium as an anode for lithium ion batteries. J Phys Chem C 116:6495

  38. Hu L, Sun Y, Zhang F, Chen Q (2013) Facile synthesis of porous Mn2O3 hierarchical microspheres for lithium battery anode with improved lithium storage properties. J Alloys Compd 576:86

  39. Xia H, Laia M, Lu L (2010) Nanoflaky MnO2/carbon nanotube nanocomposites as anode materials for lithium-ion batteries. J Mater Chem 20:6896

  40. Wang H, Cui L-F, Yang Y, Casalongue HS, Robinson JT, Liang Y, Cui Y, Dai H (2010) Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries. J Am Chem Soc 132:13978

Download references

Acknowledgements

This work is supported by Suranaree University of Technology (SUT) and by the Office of the Higher Education Commission under NRU project of Thailand, the Thailand Research Fund (TRF) in cooperation with the Commission on Higher Education and Khon Kaen University (Grant No. MRG5680159) and the Nanotechnology Center (NANOTEC), NSTDA, Ministry of Science and Technology, Thailand, through its program of Center of Excellence Network.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natkrita Prasoetsopha.

Electronic supplementary material

ESM 1

(DOC 43 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prasoetsopha, N., Pinitsoontorn, S., Fan, S. et al. Enhancement of electrochemical properties of Ca3Co4O9 as anode materials for lithium-ion batteries by transition metal doping. Ionics 23, 395–403 (2017). https://doi.org/10.1007/s11581-016-1943-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-016-1943-3

Keywords

Navigation