Skip to main content
Log in

Hydrothermal synthesis of pure LiMn2O4 from nanostructured MnO2 precursors for aqueous hybrid supercapacitors

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Pure LiMn2O4 samples with high crystallinity (LMO-1# and LMO-2#) were successfully synthesized by a facile hydrothermal method using δ-MnO2 nanoflowers and α-MnO2 nanowires as the precursors. The as-prepared samples were analyzed by XRD, SEM, and Brunauer-Emmett-Teller (BET), and their capacitive properties were investigated by cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charge/discharge test. Two LiMn2O4 samples showed good capacitive behavior in aqueous hybrid supercapacitors. AC//LMO-1# and AC//LMO-2# delivered the initial specific capacitance of 45.4 and 40.7 F g−1 in 1 M Li2SO4 electrolyte at a current density of 200 mA g−1 in the potential range of 0∼1.5 V, respectively. After 1000 cycles, the capacitance retention was 97.6% for AC//LMO-1# and 93.7% for AC//LMO-2#. Obviously, LMO-1# from δ-MnO2 nanoflowers exhibited higher specific capacitance and better cycling performance than LMO-2#, so LMO-1# was more suitable as the positive electrode material in hybrid supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Conway BE (1999) Electrochemical supercapacitors. Kluwer Academic/Plenum Publishers, New York

    Book  Google Scholar 

  2. Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors? Chem Rev 104:4245–4269

    Article  CAS  Google Scholar 

  3. Jayalakshmi M, Balasubramanian K (2008) Simple capacitors to supercapacitors—an overview. Int J Electrochem Sci 3:1196–1217

    CAS  Google Scholar 

  4. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854

    Article  CAS  Google Scholar 

  5. Li X, Wei BQ (2013) Supercapacitors based on nanostructured carbon. Nano Energy 2:159–173

    Article  CAS  Google Scholar 

  6. Frackowiak E, Abbas Q, Beguin F (2013) Carbon/carbon supercapacitors. J Energy Chem 22:226–240

    Article  CAS  Google Scholar 

  7. Faraji S, Ani FN (2015) The development supercapacitor from activated carbon by electroless plating—a review. Renew Sust Energ Rev 42:823–834

    Article  CAS  Google Scholar 

  8. Frackowiak E, Beguin F (2001) Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39:939–950

    Article  Google Scholar 

  9. Subramanian V, Luo C, Stephan AM, Nahm KS, Thomas S, Wei BQ (2007) Supercapacitors from activated carbon derived from banana fibers. J Phys Chem C 111:7527–7531

    Article  CAS  Google Scholar 

  10. Zhang SW, Chen GZ (2008) Manganese oxide based materials for supercapacitors. Energy Mater 3:186–200

    Article  CAS  Google Scholar 

  11. Wei WF, Cui XW, Chen WX, Ivey DG (2011) Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem Soc Rev 40:1697–1721

    Article  CAS  Google Scholar 

  12. Nam KW, Kim KB (2002) A study of the preparation of NiOx electrode via electrochemical route for supercapacitor applications and their charge storage mechanism. J Electrochem Soc 149:A346–A354

    Article  CAS  Google Scholar 

  13. Feng LD, Zhu YF, Ding HY, Ni CY (2014) Recent progress in nickel based materials for high performance pseudocapacitor electrodes. J Power Sources 267:430–444

    Article  CAS  Google Scholar 

  14. Qing XX, Liu SQ, Huang KL, Lv KZ, Yang YP, Lu ZG, Fang D, Liang XX (2011) Facile synthesis of Co3O4 nanoflowers grown on Ni foam with superior electrochemical performance. Electrochim Acta 56:4985–4991

    Article  CAS  Google Scholar 

  15. Ujjain SK, Singh G, Sharma RK (2015) Co3O4@reduced graphene oxide nanoribbon for high performance asymmetric supercapacitor. Electrochim Acta 169:276–282

    Article  CAS  Google Scholar 

  16. Saravanakumar B, Purushothaman KK, Muralidharan G (2012) Interconnected V2O5 nanoporous network for high-performance supercapacitors. ACS Appl Mater Interfaces 4:4484–4490

    Article  CAS  Google Scholar 

  17. Zhang LN, Zou HJ, Kang L, Wen FY, Chen LM, Chen YX, Luo Y (2016) A novel synthesis of V10O24·10H2O nanoribbons and their capacitive properties in aqueous electrolytes. J Alloys Compd 666:227–231

    Article  CAS  Google Scholar 

  18. Peng C, Zhang SW, Jewell D, Chen GZ (2008) Carbon nanotube and conducting polymer composites for supercapacitors. Prog Nat Sci 18:777–788

    Article  CAS  Google Scholar 

  19. Snook GA, Kao P, Best AS (2011) Conducting-polymer-based supercapacitor devices and electrodes. J Power Sources 196:1–12

    Article  CAS  Google Scholar 

  20. Wang YG, Xia YY (2005) A new concept hybrid electrochemical supercapacitor: carbon/LiMn2O4 aqueous system. Electrochem Commun 7:1138–1142

    Article  CAS  Google Scholar 

  21. Wu HM, Rao CV, Rambabu B (2009) Electrochemical performance of LiNi0.5Mn1.5O4 prepared by improved solid state method as cathode in hybrid supercapacitor. Mater Chem Phys 116:532–535

    Article  CAS  Google Scholar 

  22. Wang B, Kang TR, Xia N, Wen FY, Chen LM (2013) Synthesis and pseudocapacitive investigation of LiCr x Mn2-x O4 cathode material for aqueous hybrid supercapacitor. Ionics 19:1527–1533

    Article  CAS  Google Scholar 

  23. Wang FX, Xiao SY, Zhu YS, Chang Z, Hu CL, Wu YP, Holze R (2014) Spinel LiMn2O4 nanohybrid as high capacitance positive electrode material for supercapacitors. J Power Sources 246:19–23

    Article  CAS  Google Scholar 

  24. Qu QT, Fu LJ, Zhan XY, Samuelis D, Maier J, Li L, Tian S, Li ZH, Wu YP (2011) Porous LiMn2O4 as cathode material with high power and excellent cycling for aqueous rechargeable lithium batteries. Energy Environ Sci 4:3985–3990

    Article  CAS  Google Scholar 

  25. Tang W, Liu LL, Tian S, Li L, Li LL, Yue YB, Bai Y, Wu YP, Zhu K, Holze R (2011) LiMn2O4 nanorods as a super-fast cathode material for aqueous rechargeable lithium batteries. Electrochem Commun 13:1159–1162

    Article  CAS  Google Scholar 

  26. Choy JH, Kim DH, Kwon CW, Hwang SJ, Kim YI (1999) Physical and electrochemical characterization of nanocrystalline LiMn2O4 prepared by a modified citrate route. J Power Sources 77:1–11

    Article  CAS  Google Scholar 

  27. Liu W, Farrington GC, Chaput F, Dunn B (1996) Synthesis and electrochemical studies of spinel phase LiMn2O4 cathode materials prepared by the Pechini process. J Electrochem Soc 143:879–884

    Article  CAS  Google Scholar 

  28. Feng Q, Kanoh H, Miyai Y, Ooi K (1995) Hydrothermal synthesis of lithium and sodium manganese oxides and their metal ion extraction/insertion reactions. Chem Mater 7:1226–1232

    Article  CAS  Google Scholar 

  29. Jiang CH, Dou SX, Liu HK, Ichihara M, Zhou HS (2007) Synthesis of spinel LiMn2O4 nanoparticles through one-step hydrothermal reaction. J Power Sources 172:410–415

    Article  CAS  Google Scholar 

  30. Wang FX, Xiao SY, Gao XW, Zhu YS, Zhang HP, Wu YP, Holze R (2013) Nanoporous LiMn2O4 spinel prepared at low temperature as cathode material for aqueous supercapacitors. J Power Sources 242:560–565

    Article  CAS  Google Scholar 

  31. Zhang X, Yu P, Zhang HT, Zhang DC, Sun XZ, Ma YW (2013) Rapid hydrothermal synthesis of hierarchical nanostructures assembled from ultrathin birnessite-type MnO2 nanosheets for supercapacitor applications. Electrochim Acta 89:523–529

    Article  CAS  Google Scholar 

  32. Wang X, Li YD (2002) Selected-control hydrothermal synthesis of α- and β-MnO2 single crystal nanowires. J Am Chen Soc 124:2880–2881

    Article  CAS  Google Scholar 

  33. Tang W, Wang XJ, Hou YY, Li LL, Sun H, Zhu YS, Bai Y, Wu YP, Zhu K, van Ree T (2012) Nano LiMn2O4 as cathode material of high rate capability for lithium ion batteries. J Power Sources 198:308–311

    Article  CAS  Google Scholar 

  34. Fang HS, Li LP, Yang Y, Yan GF, Li GS (2008) Low-temperature synthesis of highly crystallized LiMn2O4 from alpha manganese dioxide nanorods. J Power Sources 184:494–497

    Article  CAS  Google Scholar 

  35. Wang YG, Xia YY (2006) Hybrid aqueous energy storage cells using activated carbon and lithium-intercalated compounds I. The C/LiMn2O4 system. J Electrochem Soc 153:A450–A454

    Article  CAS  Google Scholar 

  36. Rong CR, Chen SL, Han JL, Zhang KJ, Wang D, Mi XY, Wei XC (2015) Hybrid supercapacitors integrated rice husk based activated carbon with LiMn2O4. J Renew Sust Energy 7:3243–3250

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Scientific Research Funds of Sichuan Provincial Education Department (no. 15TD0018) and China West Normal University (no. 13C004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lianmei Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, H., Wang, B., Wen, F. et al. Hydrothermal synthesis of pure LiMn2O4 from nanostructured MnO2 precursors for aqueous hybrid supercapacitors. Ionics 23, 1083–1090 (2017). https://doi.org/10.1007/s11581-016-1927-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-016-1927-3

Keywords

Navigation