Skip to main content
Log in

Understanding the thermal stability and bonding characteristic of Li x Ni0.5Mn1.5O4 as cathode materials for lithium-ion battery from first principles

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The thermodynamic stability is a very important quantity for the electrode materials, because it is not only related to the electrochemical performances of the materials but also the safety issue of the cells. To evaluate the thermodynamic stability of Li x Ni0.5Mn1.5O4 (x = 0, 1), the formation enthalpies from elemental phases and oxides were obtained. The values for LiNi0.5Mn1.5O4 were calculated to be −1341.10 and −141.84 kJ mol−1, while those for Ni0.5Mn1.5O4 were −949.11 and −49.21 kJ mol−1. These values are much more negative than those of LiCoO2 and LiNiO2 compounds, indicating that the thermodynamic stability of Li x Ni0.5Mn1.5O4 is better than the two classic compounds. To clarify the microscopic origin, the density of states, magnetic moments, and bond orders were systematically investigated. The results showed that the excellent thermodynamic stability of LiNi0.5Mn1.5O4 is attributed to the absence of Jahn-Teller distortions, strong electrostatic interactions of Li–O ionic bond, and strong Ni–O/Mn–O ionic-covalent mixing bonds. After lithium extraction, the disappearance of the pure Li–O bonds leads to an increase of formation enthalpy, indicating a decreasing thermodynamic stability for Ni0.5Mn1.5O4 with respect to LiNi0.5Mn1.5O4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zhang Q, Uchaker E, Candelaria SL, Cao G (2013) Nanomaterials for energy conversion and storage. Chem Soc Rev 42:3127–3171

    Article  CAS  Google Scholar 

  2. Gong Z, Yang Y (2011) Recent advances in the research of polyanion-type cathode materials for Li-ion batteries. Energy Environ Sci 4:3223–3242

    Article  CAS  Google Scholar 

  3. Liu HP, Wen GW, Bi SF, Gao P (2015) Enhanced rate performance of nanosized Li4Ti5O12/graphene composites as anode material by a solid state-assembly method. Electrochim Acta 171:114–120

    Article  CAS  Google Scholar 

  4. Cheng J, Li X, Wang Z, Guo H (2016) Hydrothermal synthesis of LiNi0.5Mn1.5O4 sphere and its performance as high-voltage cathode material for lithium ion batteries. Ceram Int 42:3715–3719

    Article  CAS  Google Scholar 

  5. Gao ZG, Sun K, Cong LN, Zhang YH, Zhao Q, Wang RS, Xie HM, Sun LQ, Su ZM (2016) High performance 5 V LiNi0.5Mn1.5O4 spinel cathode materials synthesized by an improved solid-state method. J Alloys Compd 654:257–263

    Article  CAS  Google Scholar 

  6. Monaco S, Giorgio FD, Col LD, Riché M, Arbizzani C, Mastragostino M (2015) Electrochemical performance of LiNi0.5Mn1.5O4 composite electrodes featuring carbons and reduced graphene oxide. J Power Sources 278:733–740

    Article  CAS  Google Scholar 

  7. Patoux S, Sannier L, Lignier H, Reynier Y, Bourbon C, Jouanneau S, Cras FL, Martinet S (2008) High voltage nickel manganese spinel oxides for Li-ion batteries. Electrochim Acta 53:4137–4145

    Article  CAS  Google Scholar 

  8. Kunduraci M, Al-Sharab JF, Amatucci GG (2006) High-power nanostructured LiMn2-xNixO4 high-voltage lithium-ion battery electrode materials: electrochemical impact of electronic conductivity and morphology. Chem Mater 18:3585–3592

    Article  CAS  Google Scholar 

  9. Kim JH, Myung ST, Yoon CS, Kang SG, Sun YK (2004) Comparative study of LiNi0.5Mn1.5O4-δ and LiNi0.5Mn1.5O4 cathodes having two crystallographic structures: Fd3̄m and P4 332. Chem Mater 16:906–914

    Article  CAS  Google Scholar 

  10. Kunduraci M, Amatucci GG (2006) Synthesis and characterization of nanostructured 4.7 V LixMn1.5Ni0.5O4 spinels for high-power lithium-ion batteries. J Electrochem Soc 153:A1345–A1352

    Article  CAS  Google Scholar 

  11. Lu D, Xu M, Zhou L, Garsuch A, Lucht BL (2013) Failure mechanism of graphite/LiNi0.5Mn1.5O4 cells at high voltage and elevated temperature. J Electrochem Soc 160:A3138–A3143

    Article  CAS  Google Scholar 

  12. Choi W, Manthiram A (2006) Comparison of metal ion dissolutions from lithium ion battery cathodes. J Electrochem Soc 153:A1760–A1764

    Article  CAS  Google Scholar 

  13. Aurbach D, Markovsky B, Talyossef Y, Salitra G, Kim HJ, Choi S (2006) Studies of cycling behavior, ageing, and interfacial reactions of LiNi0.5Mn1.5O4 and carbon electrodes for lithium-ion 5-V cells. J Power Sources 162:780–789

    Article  CAS  Google Scholar 

  14. Aurbach D, Markovsky B, Salitra G, Markevich E, Talyossef Y, Koltypin M, Nazar L, Ellis B, Kovacheva D (2007) Review on electrode–electrolyte solution interactions, related to cathode materials for Li-ion batteries. J Power Sources 165:491–499

    Article  CAS  Google Scholar 

  15. Lin M, Ben L, Sun Y, Wang H, Yang Z, Gu L, Yu X, Yang XQ, Zhao H, Yu R, Armand M, Huang X (2015) Insight into the atomic structure of high-voltage spinel LiNi0.5Mn1.5O4 cathode material in the first cycle. Chem Mater 27:292–303

    Article  CAS  Google Scholar 

  16. Bhatt MD, O’Dwyer C (2015) Recent progress in theoretical and computational investigations of Li-ion battery materials and electrolytes. Phys Chem Chem Phys 17:4799–4844

  17. Islam MS, Fisher CAJ (2014) Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties. Chem Soc Rev 43:185–204

    Article  CAS  Google Scholar 

  18. Yang S, Zhang T, Tao Z, Chen J (2013) First-principles study on metal-doped LiNi0.5Mn1.5O4 as a cathode material for rechargeable Li-ion batteries. Acta Chim Sin 71:1029–1034

    Article  CAS  Google Scholar 

  19. Yi TF, Zhu YR, Zhu RS (2008) Density functional theory study of lithium intercalation for 5 V LiNi0.5Mn1.5O4 cathode materials. Solid State Ionics 179:2132–2136

    Article  CAS  Google Scholar 

  20. Kishida I, Orita K, Nakamura A, Yokogawa Y (2013) Thermodynamic analysis using first-principles calculations of phases and structures of Li x Ni0.5Mn1.5O4 (0 < x < 1). J Power Sources 241:1–5

    Article  CAS  Google Scholar 

  21. Xin XG, Shen JQ, Shi SQ (2012) Structural and magnetic properties of LiNi0.5Mn1.5O4 and L LiNi0.5Mn1.5O4-δ spinels: a first-principles study. Chin Phys B 21:128202

    Article  Google Scholar 

  22. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864–B871

    Article  Google Scholar 

  23. Segall MD, Lindan PJD, Probert MJ, Pickard CJ, Hasnip PJ, Clark SJ, Payne MC (2002) First-principles simulation: ideas, illustrations and the CASTEP code. J Phys Condens Matter 14:2717–2744

    Article  CAS  Google Scholar 

  24. Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron–gas correlation energy. Phys Rev B 45:13244–13249

    Article  CAS  Google Scholar 

  25. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192

    Article  Google Scholar 

  26. Li J, Zhang Q, Xiao X, Cheng YT, Liang C, Dudney NJ (2015) Unravelling the impact of reaction paths on mechanical degradation of intercalation cathodes for lithium-ion batteries. J Am Chem Soc 137:13732–13735

    Article  CAS  Google Scholar 

  27. Zhao Y, Li X, Yan B, Li D, Lawes S, Sun X (2015) Significant impact of 2D graphene nanosheets on large volume change tin-based anodes in lithium-ion batteries: a review. J Power Sources 274:869–884

    Article  CAS  Google Scholar 

  28. Aydinol M, Kohan A, Ceder G (1997) Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides. Phys Rev B 56:1354–1365

    Article  CAS  Google Scholar 

  29. Braithwaite JS, Catlow CRA, Gale JD (1999) Lithium intercalation into vanadium pentoxide: a theoretical study. Chem Mater 11:1990–1998

    Article  CAS  Google Scholar 

  30. Shu J, Yi TF, Shui M, Wang Y, Zhu RS, Chu XF, Huang F, Xu D, Hou L (2010) Comparison of electronic property and structural stability of LiMn2O4 and LiNi0.5Mn1.5O4 as cathode materials for lithium-ion batteries. Comput Mater Sci 50:776–779

    Article  CAS  Google Scholar 

  31. Wang M, Navrotsky A (2005) LiMO2 (M = Mn, Fe, and Co): energetics, polymorphism and phase transformation. J Solid State Chem 178:1230–1240

    Article  CAS  Google Scholar 

  32. Wang M, Navrotsky A (2004) Enthalpy of formation of LiNiO2, LiCoO2, and their solid solution, LiNi1−xCoxO2. Solid State Ionics 166:167–173

    Article  CAS  Google Scholar 

  33. Wang M, Navrotsky A (2005) Thermochemistry of Li1+xMn2−xO4 (0 ≤ x ≤ 1/3) spinel. J Solid State Chem 178:1182–1189

    Article  CAS  Google Scholar 

  34. Barin I (1995) Thermochemical data of pure substances (3rd edition). Wiley-VCH Verlag GmbH, Weinheim, Germany

    Book  Google Scholar 

  35. Ravnsbaek DB, Xiang K, Xing W, Borkiewic OJZ, Wiaderek KM, Gionet P, Chapman KW, Chupas PJ, Chiang YM (2014) Extended solid solutions and coherent transformations in nanoscale olivine cathodes. Nano Lett 14:1484–1491

    Article  CAS  Google Scholar 

  36. Tripathi R, Popov G, Sun XQ, Ryan DH, Nazar LF (2013) Ultra-rapid microwave synthesis of triplite LiFeSO4F. J Mater Chem A 1:2990–2994

    Article  CAS  Google Scholar 

  37. Liu YH, Takasaki T, Nishimura K, Yanagida M, Sakai T (2015) Development of lithium ion battery using fiber-type lithium-rich cathode and carbon anode materials. J Power Sources 290:153–158

    Article  CAS  Google Scholar 

  38. Geder J, Hoster HE, Jossen A, Garche J, Yu DYW (2014) Impact of active material surface area on thermal stability of LiCoO2 cathode. J Power Sources 257:286–292

    Article  CAS  Google Scholar 

  39. Gupta R, Manthiram A (1996) Chemical extraction of lithium from layered LiCoO2. J Solid State Chem 121:483–491

    Article  CAS  Google Scholar 

  40. Guilmard M, Croguennec L, Denux D, Delmas C (2003) Thermal stability of lithium nickel oxide derivatives. Part I: LixNi1.02O2 and LixNi0.89Al0.16O2 (x = 0.50 and 0.30). Chem Mater 15:4476–4483

    Article  CAS  Google Scholar 

  41. Kraytsberg A, Ein-Eli Y (2012) Higher, stronger, better a review of 5 volt cathode materials for advanced lithium-ion batteries. Adv Energy Mater 2:922–939

    Article  CAS  Google Scholar 

  42. Xie Y, Yu HT, Yi TF, Wang Q, Song QS, Lou M, Zhu YR (2015) Thermodynamic stability and transport properties of tavorite LiFeSO4F as a cathode material for lithium-ion batteries. J Mater Chem A 3:19728–19737

    Article  CAS  Google Scholar 

  43. Xie Y, Yu HT, Yi TF, Zhu YR (2014) Understanding the thermal and mechanical stabilities of olivine-type LiMPO4 (M = Fe, Mn) as cathode materials for rechargeable lithium batteries from first principles. ACS Appl Mater Interfaces 6:4033–4042

    Article  CAS  Google Scholar 

  44. Santhanam R, Rambabu B (2010) Research progress in high voltage spinel LiNi0.5Mn1.5O4 material. J Power Sources 195:5442–5451

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Anhui Provincial Natural Science Foundation (1508085MB25), National Natural Science Foundation of China (nos. 51274002, 21301052, and 51404002), Anhui Provincial Science Fund for Excellent Young Scholars (gxyqZD2016066), Specialized Research Fund for the Doctoral Program of Higher Education (20132301120001), Postdoctoral science-research developmental foundation of Heilongjiang Province (LBH-Q13138), Natural Science Foundation of Heilongjiang Province (E2016056), and the Applied Technology Research and Development Program of Harbin (2015RAQXJO32).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ying Xie or Ting-Feng Yi.

Electronic supplementary material

ESM 1

(PDF 93 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, QS., Yu, HT., Xie, Y. et al. Understanding the thermal stability and bonding characteristic of Li x Ni0.5Mn1.5O4 as cathode materials for lithium-ion battery from first principles. Ionics 23, 559–565 (2017). https://doi.org/10.1007/s11581-016-1846-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-016-1846-3

Keywords

Navigation