Skip to main content
Log in

Investigation on LiNi0.5Mn1.5O4 cathode material based on the precursor of nickel-manganese compound for lithium-ion battery

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The high-voltage spinel LiNi0.5Mn1.5O4 (LNMO) with submicron particle size (LNMO-8505P70010) has been synthesized based on nickel-manganese compound, which is obtained from pre-sintering the nickel-manganese hydroxide precipitation at 850 °C. The LNMO materials based on nickel-manganese hydroxide (LNMO-70010, LNMO-850570010, and LNMO-8501070010) have also been synthesized for comparison to study the pre-sintering impact on the properties of LiNi0.5Mn1.5O4 material. The morphologies and structures of the obtained samples have been analyzed by X-ray powder diffraction and scanning electron microscopy. The nickel-manganese compound has a spinel structure with high crystallinity, making it a good precursor to form high-performance LNMO with lower content of Mn3+ and impurity. The obtained LNMO-8505P70010 delivers discharge capacities of 125.4 mA h g−1 at 0.2 C, and the capacity retention of 15 C reaches 73.8 % of the capacity retention of 0.2​ C. Furthermore, it shows a superior cyclability with the capacity retention of 96.4 % after 150 cycles at 5 ​C. Compared with the synthesis method without pre-sintering, the synthesis method with pre-sintering can save energy while reaching the same discharge specific capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Santhanam R, Rambabu B (2010) Research progress in high voltage spinel LiNi0.5Mn1.5O4 material. J Power Sources 195:5442–5451

    Article  CAS  Google Scholar 

  2. Kozawa T, Kondo A, Nakamura E, Abe H, Naito M, Koga H, Nakanishi S, Iba H (2014) Rapid synthesis of LiNi0.5Mn1.5O4 by mechanical process and post-annealing. Mater Lett 132:218–220

    Article  CAS  Google Scholar 

  3. Yi TF, Yang SY, Ma HT (2014) Effect of temperature on lithium-ion intercalation kinetics of LiNi0.5Mn1.5O4-positive-electrode material. Ionics 20:309–314

    Article  CAS  Google Scholar 

  4. Zhu Z, Zhang D, Yan H, Li W, Lu Q (2013) Precise preparation of high performance spherical hierarchical LiNi0.5Mn1.5O4 for 5 V lithium ion secondary batteries. J Mater Chem A 1:5492–5496

    Article  CAS  Google Scholar 

  5. Wang J, Lin WQ, Wu BH, Zhao JB (2014) Porous LiNi0.5Mn1.5O4 sphere as 5 V cathode material for lithium ion batteries. J Mater Chem A 2:16434–16442

    Article  CAS  Google Scholar 

  6. Goodenough JB, Kim Y (2010) Challenges for rechargeable Li batteries. Chem Mater 22:587–603

    Article  CAS  Google Scholar 

  7. Song J, Shin DW, Lu YH, Amos CD (2012) Role of oxygen vacancies on the performance of Li[Ni0.5-xMn1.5+x]O4 (x = 0, 0.05, and 0.08) spinel cathodes for lithium-ion batteries. Chem Mater 24:3101–3109

    Article  CAS  Google Scholar 

  8. Xiao J, Chen XL, Sushko PV, Sushko ML (2012) High-performance LiMn1.5Ni0.5O4 spinel controlled by Mn3+ concentration and site disorder. Adv Mater 24:2109–2116

    Article  CAS  Google Scholar 

  9. Liu ZS, Jiang YG, Zeng XY, Xiao G, Song HY, Liao SJ (2014) Two-step oxalate approach for the preparation of high performance LiMn1.5Ni0.5O4 cathode material with high voltage. J Power Sources 2:47437–47443

    Google Scholar 

  10. Liu D, Zhu W, Trottier J, Gagnon C, Barray F, Guerfi A, Mauger A, Groult H, Julien CM, Goodenough JB, Zaghib K (2014) Spinel materials for high-voltage cathodes in Li-ion batteries. RSC Adv 4:154–167

    Article  CAS  Google Scholar 

  11. Jin YC, Lin CY, Duh JG (2012) Improving rate capability of high potential LiNi0.5Mn1.5O4−x cathode materials via increasing oxygen non-stoichiometries. Electrochim Acta 69:45–50

    Article  CAS  Google Scholar 

  12. Atanasov M, Barras JL, Benco L, Daul C (2000) Electronic structure chemical bonding, and vibronic coupling in MnIV/MnIII mixed valent LixMn2O4 spinels and their effect on the dynamics of intercalated Li:a cluster study using DFT. J Am Chem Soc 122:4718–4728

    Article  CAS  Google Scholar 

  13. Park OK, Cho Y, Lee S, Yoo HC, Sang HK (2011) Who will drive electric vehicles, olivine or spinel. J Energy Environ Sci 4:1621–1633

    Article  CAS  Google Scholar 

  14. Xue Y, Wang ZB, Yu FD, Zhang Y, Yin GP (2014) Ethanol-assisted hydrothermal synthesis of LiMn1.5Ni0.5O4 with excellent long-term cyclability at high rate for lithium-ion batteries. J Mater Chem A 2:4185–4191

    Article  CAS  Google Scholar 

  15. Gao XW, Deng YF, Wexler D (2015) Improving the electrochemical performance of the LiMn1.5Ni0.5O4 spinel by polypyrrole coating as a cathode material for the lithium-ion battery. J Mater Chem A 3:404–411

    Article  CAS  Google Scholar 

  16. Fang HS, Li LP, Li GS (2007) A low-temperature reaction route to high rate and high capacity LiMn1.5Ni0.5O4. J Power Sources 167:223–227

    Article  CAS  Google Scholar 

  17. Lee YS, Sun YK, Ota S, Miyashita T, Yoshio M (2002) Preparation and characterization of nano-crystalline LiMn1.5Ni0.5O4 for 5 V cathode material by composite carbonate process. Electrochem Commun 4:989–994

    Article  CAS  Google Scholar 

  18. Kim JH, Huq A, Chi MF, Pieczonka NPW, Lee E, Bridges CA, Tessema MM, Manthiram A, Persson KA, Powell BR (2014) Integrated nano-domains of disordered and ordered spinel phases in LiMn1.5Ni0.5O4 for Li-ion batteries. Chem Mater 26:4377–4386

    Article  CAS  Google Scholar 

  19. He SC, Zhang Q, Liu WW, Fang GQ, Sato YC, Zheng JW, Li DC (2013) Influence of post-annealing in N2 on structure and electrochemical characteristics of LiNi0.5Mn1.5O4. Chem Res Chin Univ 29(2):329–332

    Article  CAS  Google Scholar 

  20. Zhao CH, Zhao YL, Wang YQ (2012) Annealing on the electrical properties of Ni0.75Mn2.25O4 and Zn0.8Ni0.75Mn1.45O4 NTC ceramics. Solid State Commun 152:593–595

    Article  CAS  Google Scholar 

  21. Hagh NM, Amatucci GG (2010) A new solid-state process for synthesis of LiMn1.5Ni0.5O4-δ spinel. J Power Sources 195:5005–5012

    Article  CAS  Google Scholar 

  22. Xue Y, Wang ZB, Zheng LL, Yu FD, Liu BS, Zhang Y, Ke K (2015) Investigation on preparation and performance of spinel LiNi0.5Mn1.5O4 with different microstructures for lithium-ion batteries. Sci Rep 5:1–11

    CAS  Google Scholar 

  23. Zhang L, Zhao D, Lou XWD (2012) LiMn1.5Ni0.5O4 hollow structures as high-performance cathodes for lithium-ion batteries. Angew Chem Int Ed 51:239–241

    Article  Google Scholar 

  24. Sun YK, Lee KH, Moon SI, Oh IH (1998) Effect of crystallinity on the electrochemical behaviour of spinel Li1.03Mn2O4 cathode materials. Solid State Ionics 112:237–243

    Article  Google Scholar 

  25. Arrebola JC, Caballero A, Cruz M, Hernán L, Morales J, Castellón ER (2006) Crystallinity control of a nanostructured LiMn1.5Ni0.5O4 spinel via polymer-assisted synthesis: a method for improving its rate capability and performance in 5 V lithium batteries. Adv Funct Mater 16:1904–1912

    Article  CAS  Google Scholar 

  26. Kim JH, Myung ST, Yoon CS, Kang SG, Sun YK (2004) Comparative study of LiNi0.5Mn1.5O4-δ and LiMn1.5Ni0.5O4 cathodes having two crystallographic structures: Fd3m and P4332. Chem Mater 16:906–914

    Article  CAS  Google Scholar 

  27. Kunduraci M, Amatucci GG (2006) Synthesis and characterization of nanostructured 4.7 V LixMn1.5Ni0.5O4 spinels for high-power lithium-ion batteries. J Electrochem Soc 153(7):A1345–A1352

    Article  CAS  Google Scholar 

  28. Rosenberg ZM, Shin DW, Chemelewski KR, Goodenough JB, Manthiram A (2012) Quantitative determination of Mn3+ content in LiMn1.5Ni0.5O4 spinel cathodes by magnetic measurements. Appl Phys Lett 100:1–5

    Google Scholar 

  29. Kim JH, Pieczonka NPW, Li ZC, Wu Y, Harris S, Powell BR (2013) Understanding the capacity fading mechanism in LiNi0.5Mn1.5O4/graphite Li-ion batteries. Electrochim Acta 90:556–562

    Article  CAS  Google Scholar 

  30. Kunduraci M, Amatucci GG (2007) Effect of oxygen non-stoichiometry and temperature on cation ordering in LiMn2-xNixO4 (0.50 ≥ x ≥ 0.36) spinels. J Power Sources 16:5359–5367

    Google Scholar 

Download references

Acknowledgments

We acknowledge the National Natural Science Foundation of China (grant no. 21273058), China postdoctoral science foundation (grant nos. 2012M520731 and 2014M70350), and Heilongjiang postdoctoral financial assistance (LBH-Z12089) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-Bo Wang.

Electronic supplementary material

ESM 1

(DOC 164 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, ZJ., Liang, R., Wang, ZB. et al. Investigation on LiNi0.5Mn1.5O4 cathode material based on the precursor of nickel-manganese compound for lithium-ion battery. Ionics 23, 35–41 (2017). https://doi.org/10.1007/s11581-016-1789-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-016-1789-8

Keywords

Navigation