Skip to main content
Log in

Electrochemical comparison of LiFe0.4Mn0.595Cr0.005PO4/C and LiMnPO4/C cathode materials

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A comparison of electrochemical performance between LiFe0.4Mn0.595Cr0.005PO4/C and LiMnPO4/C cathode materials was conducted in this paper. The cathode samples were synthesized by a nano-milling-assisted solid-state process using caramel as carbon sources. The prepared samples were investigated by XRD, SEM, TEM, energy-dispersive X-ray spectroscopy (EDAX), powder conductivity test (PCT), carbon-sulfur analysis, electrochemical impedance spectroscopy (EIS), and galvanostatic charge-discharge cycling. The results showed that LiFe0.4Mn0.595Cr0.005PO4/C exhibited high specific capacity and high energy density. The initial discharge capacity of LiFe0.4Mn0.595Cr0.005PO4/C was 163.6 mAh g−1 at 0.1C (1C = 160 mA g−1), compared to 112.3 mAh g−1 for LiMnPO4/C. Moreover, the Fe/Cr-substituted sample showed good cycle stability and rate performance. The capacity retention of LiFe0.4Mn0.595Cr0.005PO4/C was 98.84 % over 100 charge-discharge cycles, while it was only 86.64 % for the pristine LiMnPO4/C. These results indicated that Fe/Cr substitution enhanced the electronic conductivity for the prepared sample and facilitated the Li+ diffusion in the structure. Furthermore, LiFe0.4Mn0.595Cr0.005PO4/C composite presented high energy density (606 Wh kg−1) and high power density (574 W kg−1), thus suggested great potential application in lithium ion batteries (LIBs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144(4):1188–1194. doi:10.1149/1.1837571

    Article  CAS  Google Scholar 

  2. Jang IC, Lim HH, Lee SB, Karthikeyan K, Aravindan V, Kang KS, Yoon WS, Cho WI, Lee YS (2010) Preparation of LiCoPO4 and LiFePO4 coated LiCoPO4 materials with improved battery performance. J Alloys Compd 497(1–2):321–324. doi:10.1016/j.jallcom. 2010.03.055

    Article  CAS  Google Scholar 

  3. L-e L, Liu J, Chen L, Xu H, Yang J, Qian Y (2013) Effect of different carbon sources on the electrochemical properties of rod-like LiMnPO4-C nanocomposites. RSC Advances 3(19):6847–6852. doi:10.1039/C3RA22862B

    Article  Google Scholar 

  4. Aravindan V, Gnanaraj J, Lee Y-S, Madhavi S (2013) LiMnPO4—a next generation cathode material for lithium-ion batteries. Journal of Materials Chemistry A 1(11):3518–3539. doi:10.1039/C2TA01393B

    Article  CAS  Google Scholar 

  5. Ong SP, Chevrier VL, Ceder G (2011) Comparison of small polaron migration and phase separation in olivine LiMnPO4 and LiFePO4 using hybrid density functional theory. Phys Rev B 83(7):075112. doi:10.1103/PhysRevB.83.075112

    Article  Google Scholar 

  6. Shang SL, Wang Y, Mei ZG, Hui XD, Liu ZK (2012) Lattice dynamics, thermodynamics, and bonding strength of lithium-ion battery materials LiMPO4 (M = Mn, Fe, Co, and Ni): a comparative first-principles study. J Mater Chem 22(3):1142–1149. doi:10.1039/C1JM13547C

    Article  CAS  Google Scholar 

  7. Oh S-M, Oh S-W, Yoon C-S, Scrosati B, Amine K, Sun Y-K (2010) High-performance carbon-LiMnPO4 nanocomposite cathode for lithium batteries. Adv Funct Mater 20(19):3260–3265. doi:10.1002/adfm.201000469

    Article  CAS  Google Scholar 

  8. Zaghib K, Trudeau M, Guerfi A, Trottier J, Mauger A, Veillette R, Julien CM (2012) New advanced cathode material: LiMnPO4 encapsulated with LiFePO4. J Power Sources 204(0):177–181. doi:10.1016/j.jpowsour. 2011.11.085

    Article  CAS  Google Scholar 

  9. Yoshida J, Stark M, Holzbock J, Hüsing N, Nakanishi S, Iba H, Abe H, Naito M (2013) Analysis of the size effect of LiMnPO4 particles on the battery properties by using STEM-EELS. J Power Sources 226(0):122–126. doi:10.1016/j.jpowsour. 2012.09.081

    Article  CAS  Google Scholar 

  10. Fang H, Yi H, Hu C, Yang B, Yao Y, Ma W, Dai Y (2012) Effect of Zn doping on the performance of LiMnPO4 cathode for lithium ion batteries. Electrochim Acta 71:266–269. doi:10.1016/j.electacta. 2012.03.160

    Article  CAS  Google Scholar 

  11. Zhang Y, Zhao Y, Deng L (2012) Enhanced electrochemical properties of LiMnPO4/C via doping with Cu. Ionics 18(6):573–578. doi:10.1007/s11581-011-0655-y

    Article  CAS  Google Scholar 

  12. Yi H, Hu C, He X, Xu H (2015) Electrochemical performance of LiMnPO4 by Fe and Zn co-doping for lithium-ion batteries. Ionics 21(3):667–671. doi:10.1007/s11581-014-1238-5

    Article  CAS  Google Scholar 

  13. Wang H, Yang Y, Liang Y, Cui L-F, Sanchez Casalongue H, Li Y, Hong G, Cui Y, Dai H (2011) LiMn1−xFexPO4 nanorods grown on graphene sheets for ultrahigh-rate-performance lithium ion batteries. Angew Chem Int Ed 50(32):7364–7368. doi:10.1002/anie.201103163

    Article  CAS  Google Scholar 

  14. Oh S-M, Jung H-G, Yoon CS, Myung S-T, Chen Z, Amine K, Sun Y-K (2011) Enhanced electrochemical performance of carbon–LiMn1−xFexPO4 nanocomposite cathode for lithium-ion batteries. J Power Sources 196(16):6924–6928. doi:10.1016/j.jpowsour. 2010.11.159

    Article  CAS  Google Scholar 

  15. Tan Z, Gao P, Cheng F, Luo H, Chen J, Zhou H, Tan S (2011) High power performance of multicomponent olivine cathode material for lithium-ion batteries. Functional Materials Letters 04(03):299–303. doi:10.1142/S1793604711002111

    Article  CAS  Google Scholar 

  16. Damen L, De Giorgio F, Monaco S, Veronesi F, Mastragostino M (2012) Synthesis and characterization of carbon-coated LiMnPO4 and LiMn1−xFexPO4 (x = 0.2, 0.3) materials for lithium-ion batteries. J Power Sources 218:250–253. doi:10.1016/j.jpowsour. 2012.06.090

    Article  CAS  Google Scholar 

  17. von Hagen R, Lorrmann H, Möller K-C, Mathur S (2012) Electrospun LiFe1−yMnyPO4/C nanofiber composites as self-supporting cathodes in Li-ion batteries. Adv Energy Mater 2(5):553–559. doi:10.1002/aenm.201100534

    Article  Google Scholar 

  18. Zong J, Peng Q, Yu J, Liu X (2013) Novel precursor of Mn(PO3(OH))·3H2O for synthesizing LiMn0.5Fe0.5PO4 cathode material. J Power Sources 228:214–219. doi:10.1016/j.jpowsour. 2012.11.103

    Article  CAS  Google Scholar 

  19. Sahana MB, Vasu S, Sasikala N, Anandan S, Sepehri-Amin H, Sudakar C, Gopalan R (2014) Raman spectral signature of Mn-rich nanoscale phase segregations in carbon free LiFe1-xMnxPO4 prepared by hydrothermal technique. RSC Advances 4(110):64429–64437. doi:10.1039/C4RA11102H

    Article  CAS  Google Scholar 

  20. Liu T, Xu J, Wu B, Xia Q, Wu X (2013) Porous LiMn0.7Fe0.3PO4-C prepared by a thermal decomposition method as high performance cathode materials for Li-ion batteries. RSC Advances 3(32):13337–13341. doi:10.1039/C3RA41672K

    Article  CAS  Google Scholar 

  21. Martha SK, Grinblat J, Haik O, Zinigrad E, Drezen T, Miners JH, Exnar I, Kay A, Markovsky B, Aurbach D (2009) LiMn0.8Fe0.2PO4: an advanced cathode material for rechargeable lithium batteries. Angew Chem Int Ed 48(45):8559–8563. doi:10.1002/anie.200903587

    Article  CAS  Google Scholar 

  22. Yamada A, Chung S-C (2001) Crystal chemistry of the olivine-type Li(Mn y Fe 1-y )PO4 and (Mn y Fe 1-y )PO4 as possible 4 V cathode materials for lithium batteries. J Electrochem Soc 148(8):A960. doi:10.1149/1.1385377

    Article  CAS  Google Scholar 

  23. Yamada A, Kudo Y, Liu K-Y (2001) Phase diagram of Li x Mn y Fe 1y PO4 (0≤x, y≤1). J ElectrochemSoc 148(10):A 1153. doi:10.1149/1.1401083

    Article  CAS  Google Scholar 

  24. Li G, Azuma H, Tohda M (2002) Optimized LiMn y Fe1-y PO4 as the cathode for lithium batteries. J Electrochem Soc 149(6):A743. doi:10.1149/1.1473776

    Article  CAS  Google Scholar 

  25. Zhang B, Wang X, Liu Z, Li H, Huang X (2010) Enhanced electrochemical performances of carbon coated mesoporous LiFe0.2Mn0.8PO4. JElectrochem. Soc 157(3):A285. doi:10.1149/1.3280230

    Article  CAS  Google Scholar 

  26. Wang D, Ouyang C, Drézen T, Exnar I, Kay A, Kwon N-H, Gouerec P, Miners JH, Wang M, Grätzel M (2010) Improving the electrochemical activity of LiMnPO4 Via Mn-site substitution. J Electrochem Soc 157(2):A225. doi:10.1149/1.3271112

    Article  CAS  Google Scholar 

  27. Liu J, Liu X, Huang T, Yu A (2012) Kinetics and electrochemical studies of Fe-substituted LiMnPO4. Int J Electrochem Sci 7(10):9859–9868

    CAS  Google Scholar 

  28. Shin HC, Park SB, Jang H, Chung KY, Cho WI, Kim CS, Cho BW (2008) Rate performance and structural change of Cr-doped LiFePO4/C during cycling. Electrochim Acta 53(27):7946–7951. doi:10.1016/j.electacta. 2008.06.005

    Article  CAS  Google Scholar 

  29. Gan Y, Chen C, Liu J, Bian P, Hao H, Yu A (2015) Enhancing the performance of LiMnPO4/C composites through Cr doping. J Alloys Compd 620:350–357. doi:10.1016/j.jallcom. 2014.09.160

    Article  CAS  Google Scholar 

  30. Shi S, Liu L, Ouyang C, Wang D-s, Wang Z, Chen L, Huang X (2003) Enhancement of electronic conductivity of LiFePO4 by Cr doping and its identification by first-principles calculations. Phys Rev B 68(19):195108. doi:10.1103/PhysRevB.68.195108

    Article  Google Scholar 

  31. Wu L, Zhong S, Lu J, Liu J, Lv F (2013) Synthesis of Cr-doped LiMnPO4/C cathode materials by sol–gel combined ball milling method and its electrochemical properties. Ionics 19(7):1061–1065. doi:10.1007/s11581-013-0919-9

    Article  CAS  Google Scholar 

  32. Hong J, Wang F, Wang X, Graetz J (2011) LiFexMn1−xPO4: a cathode for lithium-ion batteries. J Power Sources 196(7):3659–3663. doi:10.1016/j.jpowsour. 2010.12.045

    Article  CAS  Google Scholar 

  33. Zhang L-L, Duan S, Peng G, Liang G, Zou F, Huang Y-H (2013) Novel synthesis of low carbon-coated Li3V2(PO4)3 cathode material for lithium-ion batteries. J Alloys Compd 570:61–64. doi:10.1016/j.jallcom. 2013.03.189

    Article  CAS  Google Scholar 

  34. Xiang JY, Tu JP, Qiao YQ, Wang XL, Zhong J, Zhang D, Gu CD (2011) Electrochemical impedance analysis of a hierarchical CuO electrode composed of self-assembled nanoplates. J Phys Chem C 115(5):2505–2513. doi:10.1021/jp108261t

    Article  CAS  Google Scholar 

  35. Park J, Moon WG, Kim G-P, Nam I, Park S, Kim Y, Yi J (2013) Three-dimensional aligned mesoporous carbon nanotubes filled with Co3O4 nanoparticles for Li-ion battery anode applications. Electrochim Acta 105:110–114. doi:10.1016/j.electacta. 2013.04.170

    Article  CAS  Google Scholar 

  36. Cui Y, Zhao X, Guo R (2010) Improved electrochemical performance of La0.7Sr0.3MnO3 and carbon co-coated LiFePO4 synthesized by freeze-drying process. Electrochim Acta 55(3):922–926. doi:10.1016/j.electacta. 2009.08.020

    Article  CAS  Google Scholar 

  37. Subba Reddy CV, Chen M, Jin W, Zhu QY, Chen W, S-i M (2007) Characterization of (PVDF + LiFePO4) solid polymer electrolyte. J Appl Electrochem 37(5):637–642. doi:10.1007/s10800-007-9294-4

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful for the financial support with contract number 14520503100, 15ZZ095, 13PJ1407400, 21306113, and 201310-JD-B2-009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongyun Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, Y., Zhang, D., Chang, C. et al. Electrochemical comparison of LiFe0.4Mn0.595Cr0.005PO4/C and LiMnPO4/C cathode materials. Ionics 22, 1011–1019 (2016). https://doi.org/10.1007/s11581-015-1633-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-015-1633-6

Keywords

Navigation