Skip to main content
Log in

Molar thermal conductivity of molten salts

  • Short Communication
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Analysis of the available thermal conductivity data for the molten alkali and alkaline-earth salts, performed with the standard least square method and the interval analysis, reveals that the molar thermal conductivity of the molten alkali halides and alkali nitrates at temperatures close to their melting point has a constant value, equal to 19.08 and 23.42 W · m2 · mole−1 · K−1 · 10−6, respectively. The molar thermal conductivity of molten salts having bi-charged ions is twice higher than that of univalent salts. It means that the molar thermal conductivity depends on the charge of ions comprising salt. The molar (equivalent) thermal conductivity was found to be temperature independent. It allows evaluating the thermal conductivity of molten salt mixtures. The thermal conductivity for some molten mixtures (LiF-KF, CsCl-BaCl2, NaNO3-KNO3) was calculated considering the equivalent thermal conductivity as a constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Thonstad J, Fellner P, Haarberg G, Hıves J, Kvande H, Sterten A (2001) Aluminium electrolysis: fundamentals of the Hall-Heroult process, 3rd edn. Aluminium Verlag, Dusseldorf

    Google Scholar 

  2. Sytchev J, Kaptay G (2009) Influence of current density on the erosion of a graphite cathode andelectrolytic formation of carbon nanotubes in molten NaCl and LiCl. Electrochim Acta 54:6725–673. doi:10.1016/j.electacta.2009.06.0

    Article  CAS  Google Scholar 

  3. Masset P, Guidotti R (2007) Thermal activated (thermal) battery technology: part II molten salt electrolytes. J Power Sources 164:397–414. doi:10.1016/j.jpowsour.2006.10.080

    Article  CAS  Google Scholar 

  4. Khokhlov V, Afonichkin V, Ignatiev V (2009) Evaluating physical properties of molten salt reactor fluoride mixtures. J Fluor Chem 130:30–37. doi:10.1016/j.jfluchem.2008.07.018

    Article  CAS  Google Scholar 

  5. Korenko M, Straka M, Uhlir J, Szatmary L, Abramova M, Simurda M (2014) Phase analysis of solidified KF-(LiF-NaF-UF4)-ZrF4 molten electrolytes for electrowinning of uranium. J Radioanal Nucl Chem 302:549–554. doi:10.1016/j.jnucmat.2013.04.078

    Article  CAS  Google Scholar 

  6. Beneš O, Konings RJM (2009) Thermodynamic properties and phase diagrams of fluoride salts for nuclear applications. J Fluor Chem 130:22–29. doi:10.1016/j.jfluchem.2008.07.014

    Article  Google Scholar 

  7. Ishii Y, Sato K, Salanne M, Madden P, Ohtori N (2014) Thermal conductivity of molten alkali metal fluorides (LiF, NaF, KF) and their mixtures. J Phys Chem B 118:3385–3391. doi:10.1021/jp411781n

    Article  CAS  Google Scholar 

  8. Gheribi A, Torres J, Chartrand P (2014) Recommended values for the thermal conductivity of molten salts between the melting and boiling points. Sol Energy Mater Sol Cells 126:11–25. doi:10.1016/j.solmat.2014.03.028

    Article  CAS  Google Scholar 

  9. Hossain M, Kassaee M, Jeter S, Teja A (2014) A new model for the thermal conductivity of molten salts. Int J Thermophys 35:246–255. doi:10.1007/s10765-014-1573-9

    Article  CAS  Google Scholar 

  10. Khokhlov V, Korzun I, Dokutovich V, Filatov E (2011) Heat capacity and thermal conductivity of molten ternary lithium, sodium, potassium, and zirconium fluorides mixtures. J Nucl Mater 410:32–38. doi:10.1016/j.jfluchem.2008.07.018

    Article  CAS  Google Scholar 

  11. Smirnov M, Khokhlov V, Filatov E (1987) Thermal conductivity of molten halides and their mixtures. Electrochim Acta 32:1019–1026. doi:10.1016/0013-4686(87)90027-2

    Article  CAS  Google Scholar 

  12. Filatov E, Khokhlov V, Minchenko V, Hechkin G (1999) Thermal conductivity and thermal diffusivity of molten binary mixtures Li, Cs, Ba, La/Cl. Melts 5:58–62

    Google Scholar 

  13. Tufeu P, Petitet J, Denelou L, Neindre B (1985) Experimental determination of the thermal conductivity of molten pure salts and salt mixtures Int. J Thermopysics 4:315–330

    Google Scholar 

  14. Omotani T, Nagashima A (1984) Thermal conductivity of molten salts, HTS and the LiNO3,-NaNO3 system, using a modified transient hot-wire method. J Chem Eng Data 29:1–3. doi:10.1021/je00035a001

    Article  CAS  Google Scholar 

  15. Kitade S, Koboyashi Y, Nagasaka Y, Nagashima A (1989) Measurement of the thermal conductivity of molten KNO3 and NaNO3 by transient hot-wire method with ceramic coated probes. High Temp-High Pressures 21:219–224

    CAS  Google Scholar 

  16. Nakazawa N, Nagasaka Y, Nagashima A (1992) Experimental determination of the thermal diffusivity of molten alkali halides by the forced Rayleigh scattering method. II. Molten NaBr, KBr, RbBr, and CsBr. Int J Thermophys 13:753–762

    Article  CAS  Google Scholar 

  17. Nakazawa N, Nagasaka Y, Nagashima A (1992) Experimental determination of the thermal diffusivity of molten alkali halides by the forced Rayleigh scattering method. III. molten NaI, KI, RbI, and CsI. Int J Thermophys 13:763–772

    Article  CAS  Google Scholar 

  18. Nakazawa N, Nagasaka Y, Nagashima A (1992) Experimental determination of the thermal diffusivity of molten alkali halides by the forced Rayleigh scattering method. I Molten LiCl, NaCl, KCl, RbCl, and CsCl. Int J Thermophys 13:555–574

    Article  Google Scholar 

  19. Kumkov S., . Mikushina Yu.(2013) . Interval Approach to Identification of Catalytic Process Parameters Reliable Computing, 19:197–214

  20. Thermodynamic properties of individual substances, Edited by Glushko, V.P. Volume 4, book 2. Nauka, Мoscow, 1982

  21. Smirnov M, Stepanov V (1982) Density and surface tension of molten alkali halides and their mixtures. Electrochim Acta 27:1551–1563. doi:10.1016/00134686(82)80082-0

    Article  CAS  Google Scholar 

  22. Jaulin L., Kieffer M., Didrit O. and Walter E. Applied Interval Analysis. Springer Verlag, 391 pages (2001)

  23. Janz G., Damper W., Lakshminarayanan G., Lorenz P., Tomkins R. (1968) Molten Salts: Volume 1, Electrical Conductance, Density and Viscosity Data. NSRDS-NBS 15.

  24. Gustafsson S, Halling N, Kjellander R (1968) Optical determination of thermal conductivity with a plane source technique II. Molten LiNO3, RbNO3 and CsNO3. Z Naturforsch 23A:682–686

    Google Scholar 

  25. Gustafsson S, Halling N, Kjellander R (1968) Optical determination of thermal conductivity with a plane source technique, I. Molten sodium nitrate and potassium nitrate. Z Naturforsch 23A:44–47

    Google Scholar 

  26. McDonald J, Davis T (1970) Thermal conductivity of binary mixtures of alkali nitrates. J Phys Chem 74(4):725–730. doi:10.1021/j100699a007

    Article  CAS  Google Scholar 

  27. Filatov E, Kodintseva A, Khoklov V (2005) Thermal conductivity of crystalline and molten alkaline earth chlorides near melting point. Melts 2:11–15

    Google Scholar 

  28. Otsubo Y, Nagasaka Y, Nagashima A (1998) Experimental study on the forced Rayleigh scattering method using CO2 laser (3rd report, measurement of molten single carbonates and their binary and ternary mixtures). Trans Jpn Soc Mech Eng 64(619):806–813

    Article  Google Scholar 

  29. Turnbull A (1961) The thermal conductivity of molten salts. II. Theory and results for pure salts. Aust J Appl Sci 12:324–327

    CAS  Google Scholar 

  30. Redkin A, Tkacheva O (2010) Electrical conductivity of molten fluoride–oxide melts. J Chem Eng Data 55:1930–1939. doi:10.1021/je9009255

    Article  CAS  Google Scholar 

  31. Ohtori N, Oono T, Takase K (2009) Thermal conductivity of molten alkali halides: temperature and density dependence. J Chem Phys 130:044505–5. doi:10.1063/1.3064588

    Article  Google Scholar 

  32. Omotani T, Nagasaka Y, Nagashima A (1982) Measurement of the thermal conductivity of KNO3-NaNO3 mixtures using a transient hot-wire method with a liquid metal in a capillary probe. Int J Thermophys 3:17–26

    Article  CAS  Google Scholar 

  33. DiGuilio R, Teja A (1992) The thermal conductivity of the molten NaNO3-KNO3 eutectic between 525 and 590 K. Int J Thermophys 13:575–592

    Article  CAS  Google Scholar 

  34. Redkin A, Nikolaeva E, Dedyukhin A, Zaikov Y (2012) The electrical conductivity of chloride melts. Ionics 18:255–265. doi:10.1007/s11581-011-0624-5

    Article  CAS  Google Scholar 

  35. Janz G. J., Krebs U, Siegenthaler H. F. and Tomkins R. P. T. (1972) Molten Salts: Volume 3 Nitrates, Nitrites, and Mixtures: Electrical Conductance, Density, Viscosity, and Surface Tension Data J. Phys. Chem. Ref. Data 1, 581 (1972); http://dx.doi.org/10.1063/1.3253103

  36. Janz G (1988) Thermodynamic and transport properties for molten salts: correlation equations for critically evaluated density, surface tension, electrical conductance, and viscosity data. J Phys Chem Ref Data 17(2):1–307

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Russian Foundation for Basic Research. Project 15-01-07-909 and the Russian Federation Government Act 211 on Contract № 02.A03.21.0006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Redkin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Redkin, A., Zaikov, Y., Tkacheva, O. et al. Molar thermal conductivity of molten salts. Ionics 22, 143–149 (2016). https://doi.org/10.1007/s11581-015-1592-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-015-1592-y

Keywords

Navigation