Skip to main content

Advertisement

Log in

Enhancing rate performance of LiMn2O4 cathode in rechargeable hybrid aqueous battery by hierarchical carbon nanotube/acetylene black conductive pathways

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Three-dimensional hierarchical carbon nanotube/acetylene black (CNT/AB) networks are fabricated by a simple mixing method to enhance electronic contact among LiMn2O4 particles in the rechargeable hybrid aqueous battery (ReHAB), an aqueous Zn/LiMn2O4 battery system. The hierarchical and long-range conductive pathways lead to fast electronic transfer in the CNT/AB/LiMn2O4 cathode, which contributes to the outstanding rate performance (specific discharge capacity of 105 mAh g−1 at 10 C). Besides, the stable composite structure contributes to the good cycling performance and high reversibility (Coulombic efficiency of almost 100 % over 300 charge-discharge cycles at 4 C). This hierarchical conductive network design is particularly useful for energy storage applications operated at high charge-discharge rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Li W, Dahn J (1995) J Electrochem Soc 142:1742

    Article  CAS  Google Scholar 

  2. Tang W, Liu L, Tian S, Li L, Yue Y, Wu Y, Guan S, Zhu K (2010) Electrochem Commun 12:1524

    Article  CAS  Google Scholar 

  3. Ruffo R, Wessells C, Huggins RA, Cui Y (2009) Electrochem Commun 11:247

    Article  CAS  Google Scholar 

  4. Heli H, Yadegari H, Jabbari A (2011) J Phys Chem C 115:10889

    Article  CAS  Google Scholar 

  5. Pasta M, Wessells CD, Huggins RA, Cui Y (2012) Nat Commun 3:1149

    Article  Google Scholar 

  6. Hosono E, Kudo T, Honma I, Matsuda H, Zhou H (2009) Nano Lett 9:1045

    Article  CAS  Google Scholar 

  7. Kim DK, Muralidharan P, Lee HW, Ruffo R, Yang Y, Chan CK, Peng H, Huggins RA, Cui Y (2008) Nano Lett 8:3948

    Article  CAS  Google Scholar 

  8. Jia X, Chen Z, Cui X, Peng Y, Wang X, Wang G, Wei F, Lu Y (2012) ACS Nano 6:9911

    Article  CAS  Google Scholar 

  9. Wu C, Hu Z, Wang W, Zhang M, Yang J, Xie Y (2008) Chem Commun 33:3891

  10. Tang W, Tian S, Liu L, Li L, Zhang H, Yue Y, Bai Y, Wu Y, Zhu K (2011) Electrochem Commun 13:205

    Article  CAS  Google Scholar 

  11. Qu Q, Fu L, Zhan X, Samuelis D, Maier J, Li L, Tian S, Li Z, Wu Y (2011) Energy Environ Sci 4:3985

    Article  CAS  Google Scholar 

  12. Tang W, Liu L, Tian S, Li L, Yue Y, Wu Y, Zhu K (2011) Chem Commun 47:10058

    Article  CAS  Google Scholar 

  13. Qu Q, Zhu Y, Gao X, Wu Y (2012) Adv Energy Mater 2:950

    Article  CAS  Google Scholar 

  14. Tang W, Gao X, Zhu Y, Yue Y, Shi Y, Wu Y, Zhu K (2012) J Mater Chem 22:20143

    Article  CAS  Google Scholar 

  15. Li W, Dahn J, Wainwright D (1994) Science 264:1115

    Article  CAS  Google Scholar 

  16. Wang G, Fu L, Zhao N, Yang L, Wu Y, Wu H (2007) Angew Chem Int Ed 119:299

    Article  Google Scholar 

  17. Wang H, Huang K, Zeng Y, Yang S, Chen L (2007) Electrochim Acta 52:3280

    Article  CAS  Google Scholar 

  18. Luo JY, Cui WJ, He P, Xia YY (2010) Nat Chem 2:760

    Article  Google Scholar 

  19. Wang X, Hou Y, Zhu Y, Wu Y, Holze R (2013) Sci Rep 3:1401

    Google Scholar 

  20. Xu C, Li B, Du H, Kang F (2012) Angew Chem Int Ed 124:957

    Article  Google Scholar 

  21. Whitacre J, Tevar A, Sharma S (2010) Electrochem Commun 12:463

    Article  CAS  Google Scholar 

  22. Park SI, Gocheva I, Okada S, Yamaki J (2011) J Electrochem Soc 158:A1067

    Article  CAS  Google Scholar 

  23. Wu W, Mohamed A, Whitacre J (2013) J Electrochem Soc 160:A497

    Article  CAS  Google Scholar 

  24. Li Z, Young D, Xiang K, Carter WC, Chiang YM (2013) Adv Energy Mater 3:290

    Article  CAS  Google Scholar 

  25. Wessells CD, Huggins RA, Cui Y (2011) Nat Commun 2:550

    Article  Google Scholar 

  26. Soloveichik GL (2011) Annu Rev Chem Biomol Eng 2:503

    Article  CAS  Google Scholar 

  27. Shen Y, Kordesch K (2000) J Power Sources 87:162

    Article  CAS  Google Scholar 

  28. Shukla A, Venugopalan S, Hariprakash B (2001) J Power Sources 100:125

    Article  CAS  Google Scholar 

  29. Köhler U, Antonius C, Bäuerlein P (2004) J Power Sources 127:45

    Article  Google Scholar 

  30. Wang H, Liang Y, Gong M, Li Y, Chang W, Mefford T, Zhou J, Wang J, Regier T, Wei F (2012) Nat Commun 3:917

    Article  Google Scholar 

  31. Gao XP, Yao SM, Yan TY, Zhou Z (2009) Energy Environ Sci 2:502

    Article  CAS  Google Scholar 

  32. Wang G, Fu L, Wang B, Zhao N, Wu Y, Holze R (2008) J Appl Electrochem 38:579

    Article  CAS  Google Scholar 

  33. Tang W, Liu L, Tian S, Li L, Li L, Yue Y, Bai Y, Wu Y, Zhu K, Holze R (2011) Electrochem Commun 13:1159

    Article  CAS  Google Scholar 

  34. Yan J, Wang J, Liu H, Bakenov Z, Gosselink D, Chen P (2012) J Power Sources 216:222

    Article  CAS  Google Scholar 

  35. Jia X, Yan C, Chen Z, Wang R, Zhang Q, Guo L, Wei F, Lu Y (2011) Chem Commun 47:9669

    Article  CAS  Google Scholar 

  36. Ma SB, Nam KW, Yoon WS, Bak SM, Yang XQ, Cho BW, Kim KB (2009) Electrochem Commun 11:1575

    Article  CAS  Google Scholar 

  37. Liu X, Peng H, Zhang Q, Huang J, Liu X, Wang L, He X, Zhu W, Wei F (2014) ACS Sustainable Chem Eng 2:200

    Article  CAS  Google Scholar 

  38. Jia X, Zhang Q, Zhao M, Xu G, Huang J, Qian W, Lu Y, Wei F (2012) J Mater Chem 22:7050

    Article  CAS  Google Scholar 

  39. Ding Y, Xie J, Cao G, Zhu T, Yu H, Zhao X (2011) Adv Funct Mater 21:348

    Article  CAS  Google Scholar 

  40. Tang W, Hou Y, Wang F, Liu L, Wu Y, Zhu K (2013) Nano Lett 13:2036

    Article  CAS  Google Scholar 

  41. Wang Y, Xia Y (2005) Electrochem Commun 7:1138

    Article  CAS  Google Scholar 

  42. Jia X, Chen Z, Suwarnasarn A, Rice L, Wang X, Sohn H, Zhang Q, Wu B, Wei F, Lu Y (2012) Energy Environ Sci 5:6845

    Article  CAS  Google Scholar 

  43. Ciucci F, Carraro T, Chueh WC, Lai W (2011) Electrochim Acta 56:5416

    Article  CAS  Google Scholar 

  44. Ciucci F, Lai W (2012) Electrochim Acta 81:205

    Article  CAS  Google Scholar 

  45. Ciucci F (2013) Electrochim Acta 87:532

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by Positec, the Natural Sciences and Engineering Research Council of Canada (NSERC), Canadian Foundation for Innovation (CFI), and the Canada Research Chairs (CRC) program. One of the authors (Xiao Zhu) thanks the China Scholarship Council for the Study Abroad Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1.86 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X., Doan, T.N.L., Yu, Y. et al. Enhancing rate performance of LiMn2O4 cathode in rechargeable hybrid aqueous battery by hierarchical carbon nanotube/acetylene black conductive pathways. Ionics 22, 71–76 (2016). https://doi.org/10.1007/s11581-015-1527-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-015-1527-7

Keywords

Navigation