Skip to main content
Log in

Enhanced rate performance of lithium titanium oxide anode material by bromine doping

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Br-doped lithium titanium oxide (Li4Ti5O12) particles in the form of Li4Ti5Br x O12-x (x = 0, 0.1, 0.2, 0.3, 0.4) are synthesized via a simple liquid deposition reaction, followed by a high-temperature treatment. The effects of bromine (Br) doping on the structures and electrochemical properties of Li4Ti5O12 are extensively studied. It is found that Br atoms can enter the lattice structure and enlarge the lattice parameters of Li4Ti5O12. Although Br doping has not changed the phase composition, obvious effects on the particle’s morphology and size have been observed. Electrochemical test results indicate that the rate capability of Li4Ti5O12 has been evidently improved by Br doping at an appropriate concentration. The as-synthesized Li4Ti5O11.8Br0.2 electrode presents much higher discharge capacity and better cycle stability than that of the other electrodes. The greatly enhanced electrochemical performance of Li4Ti5O11.8Br0.2 may be attributed to the improved dispersion of nanoparticles and increased electrical conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bruce PG, Scrosati B, Tarascon JM (2008) Angew Chem Int Ed 47:2930–2946

    Article  CAS  Google Scholar 

  2. Borghols WJH, Wagemaker M, Lafont U, Kelder EM, Mulder FM (2009) J Am Chem Soc 131:17786–17792

    Article  CAS  Google Scholar 

  3. Shen LF, Yuan CZ, Luo HJ, Zhang XG, Yang SD, Lu XJ (2011) Nanoscale 3:572–574

    Article  CAS  Google Scholar 

  4. Tang YF, Yang L, Qiu Z, Huang JS (2009) J Mater Chem 19:5980–5984

    Article  CAS  Google Scholar 

  5. Ohzuku T, Ueda A, Yamamoto N (1995) J Electrochem Soc 142:1431–1435

    Article  CAS  Google Scholar 

  6. Ariyoshi K, Yamato R, Ohzuku T (2005) Electrochim Acta 51:1125–1129

    Article  CAS  Google Scholar 

  7. Li H, Huang X, Chen L, Zhou G, Zhang Z, Yu D, Mo YJ, Pei N (2000) Solid State Ionics 135:181–191

    Article  CAS  Google Scholar 

  8. Wagemaker M, van Eck ERH, Kentgens APM, Mulder FM (2009) J Phys Chem B 113:224–230

    Article  CAS  Google Scholar 

  9. Takai S, Kamata M, Fujine S, Yoneda K, Kanda K, Esaka T (1999) Solid State Ionics 123:165–172

    Article  CAS  Google Scholar 

  10. Shen LF, Yuan CZ, Luo HJ, Zhang XG, Xu K, Xia YY (2010) J Mater Chem 20:6998–7004

    Article  CAS  Google Scholar 

  11. Liu ZM, Zhang NQ, Sun KN (2012) J Mater Chem 22:11688–11693

    Article  CAS  Google Scholar 

  12. Zhang NQ, Liu ZM, Yang TY, Liao CL, Wang ZJ, Sun KN (2011) Electrochem Commun 13:654–656

    Article  CAS  Google Scholar 

  13. Tang YF, Yang L, Fang SH, Qiu Z (2009) Electrochim Acta 54:6244–6249

    Article  CAS  Google Scholar 

  14. Tang YF, Yang L, Qiu Z, Huang JS (2008) Electrochem Commun 10:1513–1516

    Article  CAS  Google Scholar 

  15. Yu L, Wu HB (2013) Lou (David) XW. Adv Mater 25:2296–2300

    Article  CAS  Google Scholar 

  16. Zhao L, Hu YS, Li H, Wang ZX, Chen LQ (2011) Adv Mater 23:1385–1388

    Article  CAS  Google Scholar 

  17. Ni HF, Fan L-Z (2012) J Power Sources 214:195–199

    Article  CAS  Google Scholar 

  18. Zhu GN, Liu HJ, Zhuang JH, Wang CX, Wang YG, Xia YY (2011) Energy Environ Sci 4:4016–4022

    Article  CAS  Google Scholar 

  19. Wang YQ, Gu L, Guo YG, Li H, He XQ, Tsukimoto S, Ikuhara Y, Wan LJ (2012) J Am Chem Soc 134:7874–7879

    Article  CAS  Google Scholar 

  20. Shen LF, Zhang XG, Uchaker E, Yuan CZ, Cao GZ (2012) Adv Energy Mater 2:691–698

    Article  CAS  Google Scholar 

  21. Chen CH, Vaughey JT, Jansen AN, Dees DW, Kahaian AJ, Goacher T, Thackeray MM (2001) J Electrochem Soc 148:A102–A104

    Article  CAS  Google Scholar 

  22. Yi TF, Shu J, Zhu YR, Zhu XD, Zhu RS, Zhou AN (2010) J Power Sources 195:285–288

    Article  CAS  Google Scholar 

  23. Park KS, Benayad A, Kang DJ, Doo SG (2008) J Am Chem Soc 130:14930–14931

    Article  CAS  Google Scholar 

  24. Jhan YR, Lin CY, Duh JG (2012) Electrochim Acta 63:9–15

    Article  CAS  Google Scholar 

  25. Yi TF, Xie Y, Wu QJ, Liu HP, Jiang LJ, Ye MF, Zhu RS (2012) J Power Sources 214:220–226

    Article  CAS  Google Scholar 

  26. Zhang QY, Zhang CL, Li B, Kang SF, Li X, Wang YG (2013) Electrochim Acta 98:146–152

    Article  CAS  Google Scholar 

  27. Tian BB, Xiang HF, Zhang L, Li Z, Wang HH (2010) Electrochim Acta 55:453–5458

    Google Scholar 

  28. Kim JG, Park MS, Hwang SM, Heo YU, Liao T, Sun ZQ, Park JH, Kim KJ, Jeong GJ, Kim YJ, Kim JH, Dou SX (2014) ChemSusChem 7:1451–1457

    Article  CAS  Google Scholar 

  29. Huang SH, Wen ZY, Gu ZH, Zhu XJ (2005) Electrochim Acta 50:4057–4062

    Article  CAS  Google Scholar 

  30. Qi YL, Huang YD, Jia DZ, Bao SJ, Guo ZP (2009) Electrochim Acta 54:4772–4776

    Article  CAS  Google Scholar 

  31. Huang YD, Qi YL, Jia DZ, Wang XC, Guo ZP (2012) J Solid State Electrochem 16:2011–2016

    Article  CAS  Google Scholar 

  32. Kubo K, Fujiwara M, Yamada S, Arai S, Kanda M (1997) J Power Sources 68:553–557

    Article  CAS  Google Scholar 

  33. Kim GH, Kim JH, Myung ST, Yoon CS, Sun YK (2005) J Electrochem Soc 152:A1707–A1713

    Article  CAS  Google Scholar 

  34. Amatucci GG, Pereira N, Zheng T, Plitz I, Tarascon JM (1999) J Power Sources 81:39–43

    Article  Google Scholar 

  35. Amatucci GG, Pereira N, Zheng T, Trarascon JM (2001) J Electrochem Soc 148:A171–A182

    Article  CAS  Google Scholar 

  36. Lu F, Zhou YC, Liu J, Pan Y (2011) Electrochim Acta 56:8833–8838

    Article  CAS  Google Scholar 

  37. Gao CM, Song HW, Hu LY, Pan GH, Qin RF, Wang F, Dai QL, Fan LB, Liu LN, Liu HH (2008) J Lumin 128:559–564

    Article  CAS  Google Scholar 

  38. Sun H, Wang S, Ang HM, Tadé MO, Li Q (2010) Chem Eng J 162:437–447

    Article  CAS  Google Scholar 

  39. Lin H, Kumon S, Kozuka H, Yoko T (1998) Thin Solid Films 315:266–272

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial supported from the 973 project (2013CB934001 and 2015CB932500), NSF of China (51172024, 51372022 and 51302011) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li-Zhen Fan or Yin-Zhen Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, H., Song, WL., Fan, LZ. et al. Enhanced rate performance of lithium titanium oxide anode material by bromine doping. Ionics 21, 3169–3176 (2015). https://doi.org/10.1007/s11581-015-1508-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-015-1508-x

Keywords

Navigation