Skip to main content
Log in

Chromium substitution effect on structural and electrochemical behavior of Li-Cr-Ni-O oxides

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The chromium-substituted LiCr x Ni1−x O2 oxides were prepared from lithium hydroxide monohydrate (LiOH·H2O), NiO, and Cr2O3. The structure of Li1.5Cr0.5NiO3 phase has been investigated by means of X-ray single crystal and powder diffraction (space group P-3m1, a = 2.9256(1), c = 7.1539(2) Å). The relations between Li1.5Cr0.5NiO3 structure, rhombohedral LiNiO2, and NiO are described by a group-subgroup scheme on the basis of Bärnighausen formalism. Electronic structures were calculated applying the TB-LMTO-ASA 4.7 program. The maximum of electron localization function (ELF) was obtained around the oxygen atoms. Features of the crystal structure of the trigonal Li1.5Cr0.5NiO3 phase cause lower electrode capacity compared to rhombohedral LiNiO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Fergus JW (2010) Recent developments in cathode materials for lithium ion batteries. J Power Sources 195:939–954

    Article  CAS  Google Scholar 

  2. Antolini E (2004) LiCoO2: formation, structure, lithium and oxygen non-stoichiometry, electrochemical behaviour and transport properties. Solid State Ionics 170:159–171

    Article  CAS  Google Scholar 

  3. Rougier A, Bravereau P, Delmas D (1996) Optimization of the composition of the Li1–zNi1+zO2 electrode materials: Structural, magnetic, and electrochemical studies. J Electrochem Soc 143:1168–1175

    Article  CAS  Google Scholar 

  4. Liu H, Yang Y, Zhang J (2007) Reaction mechanism and kinetics of lithium ion battery cathode material LiNiO2 with CO2. J Power Sources 173:556–561

    Article  CAS  Google Scholar 

  5. Kanno H, Kubo Y, Kawamoto Y, Kamiyama T, Izumi F, Takeda Y, Takano M (1994) Phase relationship and lithium deintercalation in lithium nickel oxides. J Solid State Chem 110:216–225

    Article  CAS  Google Scholar 

  6. Pérès JP, Demourgues A, Delmas C (1998) Structural investigations on Li0.65−z Ni1+z O2 cathode material: XRD and EXAFS studies. Solid State Ionics 111:135–144

    Article  Google Scholar 

  7. Li D, Peng Z, Ren H, Guo W, Zhou Y (2008) Synthesis and characterization of LiNi1−x Co x O2 for lithium batteries by a novel method. Mater Chem Phys 107:171–176

    Article  CAS  Google Scholar 

  8. Baskaran R, Kuwata N, Kamishima O, Kawamura J, Selvasekarapandian S (2009) Structural and electrochemical studies on thin film LiNi0.8Co0.2O2 by PLD for micro battery. Solid State Ionics 180:636–643

    Article  CAS  Google Scholar 

  9. Sakamoto K, Hirayama M, Sonoyama N, Mori D, Yamada A, Tamura K, Mizuki J, Kanno R (2009) Surface structure of LiNi0.8Co0.2O2: a new experimental technique using in situ X-ray diffraction and two-dimensional epitaxial film electrodes. Chem Mater 21:2632–2640

    Article  CAS  Google Scholar 

  10. Martha SK, Sclar H, Framowitz ZS, Kovacheva D, Saliyski N, Gofer Y, Sharon P, Golik E, Markovsky B, Aurbach D (2009) A comparative study of electrodes comprising nanometric and submicron particles of LiNi0.50Mn0.50O2, LiNi0.33Mn0.33Co0.33O2, and LiNi0.40Mn0.40Co0.20O2 layered compounds. J Power Sources 189:248–255

    Article  CAS  Google Scholar 

  11. Lu CH, Lin YK (2009) Microemulsion preparation and electrochemical characteristics of LiNi1/3Co1/3Mn1/3O2 powders. J Power Sources 189:40–44

    Article  CAS  Google Scholar 

  12. Koksbang R, Norby P (1991) Reversibility of the electrochemical lithium insertion in “Cr3O8”—comparison with LiCr3O8. Electrochim Acta 36:127–133

    Article  CAS  Google Scholar 

  13. Vidya R, Ravindran P, Kjekshus A, Fjellvåg H (2006) Crystal and electronic structures of Cr3O8 and LiCr3O8: probable cathode materials in Li batteries. Phys Rev B 73:235113-1–235113–13

    Google Scholar 

  14. Oxford Diffraction, CrysAlis CCD and CrysAlis RED, Oxford Diffraction Ltd (2008), Abingdon Oxfordshire England

  15. G.M. Sheldrick, SHELXS-97andSHELXL-97—WinGX Version, Release 97–2 (1997) University of Göttingen Germany

  16. Rodriguez-Carvajal J (1993) Recent advances inmagnetic structure determination by neutron powder diffraction. Phys B 192:55–69

    Article  CAS  Google Scholar 

  17. Roisnel T, Rodriguez-Carvajal J (2001) WinPLOTR, a windows tool for powder diffraction pattern analysis. Mater Sci Forum 378–381:118–123

    Article  Google Scholar 

  18. Andersen OK (1975) Linear methods in band theory. Phys Rev B 12:3060–3117

    Article  CAS  Google Scholar 

  19. Skriver H (1984) The LMTO method. Springer-Verlag, Berlin

    Book  Google Scholar 

  20. Phariseau P, Temmerman M (1984) The electronic structure of complex systems. Plenum, New York

    Book  Google Scholar 

  21. Andersen OK, Jepsen O (1984) Explicit, first-principles tight-binding theory. Phys Rev Lett 53:2571–2574

    Article  CAS  Google Scholar 

  22. Korringa J (1947) On the calculation of the energy of a Bloch wave in a metal. Physica 13:392–399

    Article  Google Scholar 

  23. Kohn W, Rostoker N (1954) Solution of the Schrödinger equation in periodic lattices with an application to metallic lithium. Phys Rev 94:1111–1120

    Article  CAS  Google Scholar 

  24. Krier G, Jepsen O, Burkhardt A, Andersen OK (1995) The TB-LMTOASA program, version 4.7, Max-Planck-Institut für Festkörperforschung Stuttgart Germany

  25. von Barth U, Hedin L (1972) A local exchange-correlation potential for the spin polarized case. i. J Phys C Solid State 5:1629–1714

    Article  Google Scholar 

  26. Blöchl PE, Jepsen O, Andersen OK (1994) Improved tetrahedron method for Brillouin-zone integrations. Phys Rev B 49:16223–16234

    Article  Google Scholar 

  27. Dronskowski R, Blöchl PE (1993) Crystal Orbital Hamilton Populations (COHP). energy-resolved visualization of chemical bonding in solids based on density-functional calculations. J Phys Chem 97:8617–8625

    Article  CAS  Google Scholar 

  28. Becke AD, Edgecombe KE (1990) A simple measure of electron localization in atomic and molecular systems. J Chem Phys 92:5397–5404

    Article  CAS  Google Scholar 

  29. Silvi B, Savin A (1994) Classification of chemical bonds based on topological analysis of electron localization functions. Nature 371:683–687

    Article  CAS  Google Scholar 

  30. Eck B (2012), wxDragon 1.6.6 Aachen Germany vailable from, http://www.ssc.rwth-aachen.de

  31. Du YL, Deng Y, Zhang MS (2006) Investigation of Li-induced structural disorder and phase transition in ZnO by Raman spectroscopy. Solid State Commun 137:78–81

    Article  CAS  Google Scholar 

  32. Pavlyuk V, Misztal R, Ciesielski W (2014) Eur J Inorg Chem 925–931

  33. Bärnighausen H (1980) Group–subgroup relations between space groups: a useful tool in crystal chemistry. Commun Math Chem 9:139–175

    Google Scholar 

  34. Galakhov VR, Butorin SM, Kurmaev EZ, Korotin MA (1991) Phys B Condens Matter 168:163–169

    Article  CAS  Google Scholar 

  35. Galakhov VR, Kurmaev EZ, Uhlenbrock S, Neumann M, Kellerman DG, Gorshkov VS (1995) X-ray emission spectra and valence band structure of the 3d transition metal oxides. Solid State Commun 95:347–351

    Article  CAS  Google Scholar 

  36. Kuiper P, Kruizinga G, Ghijsen J, Sawatzky GA, Verweij H (1989) Character of holes in LixNi1-xO and their magnetic behaviour. Phys Rev Lett 62:221–224

    Article  CAS  Google Scholar 

  37. Anisimov VI, Zaanen J, Andersen OK (1991) Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys Rev B 44:943–954

    Article  CAS  Google Scholar 

  38. Kwon IH, Park HR, Song YY (2013) Effects of Zn, Al and Ti substitution on the electrochemical properties of LiNiO2 synthesized by the combustion method. Russ J Electrochem 49:221–227

    Article  CAS  Google Scholar 

  39. Song MY, Park CK, Park HR, Mumm DR (2012) Variations in the electrochemical properties of metallic elements-substituted LiNiO2 cathodes with preparation and cathode fabrication conditions. Electron Mater Lett 8:37–42

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from the National Science Centre, Poland (nr 2014/15/B/ST8/00101) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volodymyr Pavlyuk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Misztal, R., Balińska, A., Kulawik, D. et al. Chromium substitution effect on structural and electrochemical behavior of Li-Cr-Ni-O oxides. Ionics 21, 3039–3049 (2015). https://doi.org/10.1007/s11581-015-1502-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-015-1502-3

Keywords

Navigation