Skip to main content
Log in

Fabrication of electrochemical sensor based on molecularly imprinted polymer and nanoparticles for determination trace amounts of morphine

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A simple and rapid electrochemical method developed for the detection of trace amounts of morphine (MO) at the surface of modified pencil graphite electrode (PGE) with multiwall carbon nanotubes (MWCNTs), molecularly imprinted polymer (MIP), and gold nanoparticles (AuNPs).Various types of electrochemical methods containing cyclic voltammetry (CV), square wave voltammetry (SWV), and electrochemical impedance spectroscopy (EIS) were employed to probe the characteristics of the constructed electrode toward morphine. After optimization of several effective parameters, the calibration curve by SWV was linear in two linear domains, over the range of 0.008 to 5 μmol L−1 vs. Ag/AgCl, and the detection limit was 2.9 nM. The relative standard deviation (RSD) for six replicate determinations of 0.05 μmol L−1 MO was found to be 2.57 % (S/N = 3). Finally, the ability of the electrochemical sensor was successfully applied for MO determination in real samples such as human urine and plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. World Health Organization (1986) Cancer pain relief, 2nd edn. World Health Organization, Geneva, p 21

    Google Scholar 

  2. Wasels R, Belleville F (1994) Gas chromatographic-mass spectrometric procedures used for the identification and determination of morphine, codeine and 6-monoacetylmorphine. J Chromatogr A 674:225–234

    Article  CAS  Google Scholar 

  3. Tagliaro F, Franchi D, Dorizzi R, Marigo M (1989) High-performance liquid chromatographic determination of morphine in biological samples: an overview of separation methods and detection techniques. J Chromatogr 488:215–228

    Article  CAS  Google Scholar 

  4. Milne RW, Nation RL, Somogyi AA (1996) The disposition of morphine and its 3- and 6-glucuronide metabolites in humans and animals, and the importance of the metabolites to the pharmacological effects of morphine. Drug Metab Rev 28:345–472

    Article  CAS  Google Scholar 

  5. Jordan PH, Hart JP (1991) Voltammetric behaviour of morphine at a glassy carbon electrode and its determination in human serum by liquid chromatography with electrochemical detection under basic conditions. Analyst 116:991–996

    Article  CAS  Google Scholar 

  6. Christrup LL (1997) Morphine metabolites. Acta Anaesthesiol Scand 41:116–122

    Article  CAS  Google Scholar 

  7. Meng QC, Cepeda MS, Kramer T, Zou H, Matoka DJ, Farrar J (2001) High-performance liquid chromatographic determination of morphine and its 3- and 6- glucuronide metabolites by two-step solid-phase extraction. J Chromatogr B 742:115–123

    Article  Google Scholar 

  8. Yin C, Tang C, Wu X (2003) HPLC determination of aminophylline, methoxy phenamine hydrochloride, noscapine and … forms with an aqueous-organic mobile phase. J Pharm Biomed Anal 33:39–43

    Article  CAS  Google Scholar 

  9. Ary K, Rona K, Pharm J (2001) LC Determination of morphine and morphine glucuronides in human plasma by coulometric and UV detection. J Pharm Biomed Anal 26:179–187

    Article  CAS  Google Scholar 

  10. Soares ME, Seabra V, Bastos ML (1992) Comparative-study of different extractive procedures to quantify morphine in urine by HPLC-UV. J Liq Chromatogr 15:1533–1541

    Article  CAS  Google Scholar 

  11. Bermejo AM, Ramos I, Fernandez P, Lopezrivadulla M, Cruz A, Chirotti M, Fucci N, Marsilli R (1992) Morphine determination by gas chromatography/mass spectrospcopy in human vitreous humor and comparison with radioimmunoassay. J Anal Toxicol 16:372–374

    Article  CAS  Google Scholar 

  12. Guillot JG, Lefebvre M, Weber JP (1997) Determination of heroin, 6-acetylmorphine, and morphine in biological fluids using their propionyl derivatives with ion trap GC-MS. J Anal Toxicol 21:127–133

    Article  CAS  Google Scholar 

  13. Leis HJ, Fauler G, Raspotnig G, Windischhofer W (2000) Quantitative analysis of morphine in human plasma by gas chromatography-negative ion chemical ionization mass spectrometry. J Chromatogr B Biomed Sci Appl 744:113–119

    Article  CAS  Google Scholar 

  14. Meatherall R (1999) GC-MS confirmation of codeine, morphine, 6-acetylmorphine, hydro-codone, hydromorphone, oxycodone, and oxymorphone in urine. J Anal Toxicol 23:177–186

    Article  CAS  Google Scholar 

  15. Dienes-Nagy A, Rivier L, Giroud C, Augsburger M, Mangin P (1999) Method for quantification of morphine and its 3- and 6-glucuronides, codeine, codeine glucuronide and 6-monoacetylmorphine in human blood by liquid chromatography-electrospray mass spectrometry for routine analysis in forensic toxicology. J Chromatogr A 854:109–118

    Article  CAS  Google Scholar 

  16. Alnajjar A, McCord B (2003) Determination of heroin metabolites in human urine using capillary zone electrophoresis with β-cyclodextrin and UV detection. J Pharm Biomed Anal 33:463–473

    Article  CAS  Google Scholar 

  17. Idris AM, Alnajjar AO (2008) Exploiting sequential injection analysis to automate on-line sample treatment and quantitative determination of morphine in human urine. Talanta 77:522–526

    Article  CAS  Google Scholar 

  18. Meadway C, George S, Braithwaite R (2002) A rapid GC-MS method for the determination of dihydrocodeine, codeine, norcodeine, morphine, normorphine and 6-MAM in urine. Forensic Sci Int 127:136–141

    Article  CAS  Google Scholar 

  19. Whittington D, Kharasch ED (2003) Determination of morphine and morphine glucuronides in human plasma by 96-well plate solid-phase extraction and liquid chromatography-electrospray ionization mass spectrometry. J Chromatogr B 796:95–103

    Article  CAS  Google Scholar 

  20. Mabuchi M, Takatsuka S, Matsuoka M, Tagawa K (2004) Determination of morphine, morphine-3-glucuronide and morphine-6-glucuronide in monkey and dog plasma by high-performance liquid chromatography-electrospray ionization tandem mass spectrometry. J Pharm Biomed Anal 35:563–573

    Article  CAS  Google Scholar 

  21. Salimi A, Hallaj R, Khayatian GR (2005) Amperometric detection of morphine at preheated glassy carbon electrode modified with multiwall carbon nanotubes. Electroanalysis 17:873–879

    Article  CAS  Google Scholar 

  22. Niazi A, Ghasemi J, Zendehdel M (2007) Simultaneous voltammetric determination of morphine and noscapine by adsorptive differential pulse stripping method and least-squares support vector machines. Talanta 74:247–254

    Article  CAS  Google Scholar 

  23. Pournaghi-Azar MH, Saadatirad A (2008) Simultaneous voltammetric and amperometric determination of morphine and codeine using a chemically modified-palladized aluminum electrode. J Electroanal Chem 624:293–298

    Article  CAS  Google Scholar 

  24. Ho KC, Chen CY, Hsu HC, Chen LC, Shiesh SC, Lin XZ (2004) Amperometric detection of morphine at a Prussian blue-modified indium tin oxide electrode. Biosens Bioelectron 20:3–8

    Article  CAS  Google Scholar 

  25. Niazi A, Yazdanipour A (2008) Determination of trace amounts of morphine in human plasma by anodic adsorptive stripping differential pulse voltammetry. Chin Chem Lett 19:465–468

    Article  CAS  Google Scholar 

  26. Xu F, Gao M, Wang L, Zhou T, Jin L, Jin J (2002) Amperometric determination of morphine on cobalt hexacyanoferrate modified electrode in rat brain microdialysates. Talanta 58:427–432

    Article  CAS  Google Scholar 

  27. Sun IW, Cheng HL (2001) Square-Wave Voltammetric Detection of Apomorphine on a Nafion Film Modified Glassy Carbon Electrode. Electroanalysis 13:1544–1546

    Article  Google Scholar 

  28. Dimitriev Y, Ivanova Y, Iordanova R (2008) History of sol-gel science and technology. J Univ Chem Technol Metall 43:181–192

    CAS  Google Scholar 

  29. Wulff G, Sarhan A, Zabrocki K (1973) Enzyme-analogue built polymers and their use for the resolution of racemates. Tetrahedron Lett 14:4329–4332

    Article  Google Scholar 

  30. Vlatakis G, Andersson LI, Müller R, Mosbach K (1993) Drug assay using antibody mimics made by molecular imprinting. Nature 361:645–647

    Article  CAS  Google Scholar 

  31. Lanza F, Sellergren B (2001) The application of molecular imprinting technology to solid phase extraction. Chromatographia 53:599–611

    Article  CAS  Google Scholar 

  32. Andersson LI (2000) Molecular imprinting for drug bioanalysis, a review on the application of imprinted polymers to solid-phase extraction and binding assay. J Chromatogr B 739:163–173

    Article  CAS  Google Scholar 

  33. Piacham T, Nantasenamat C, Suksrichavalit T, Puttipanyalears C, Pissawong T, Maneewas S, Isarankura-Na-Ayudhya C, Prachayasittikul V (2009) Synthesis and theoretical study of molecularly imprinted nanospheres for recognition of tocopherols. Molecules 14:2985–3002

    Article  CAS  Google Scholar 

  34. Jiang XM, Zhao CD, Jiang N, Zhang HX, Liu MC (2008) Selective solid-phase extraction using molecular imprinted polymer for the analysis of diethylstilbestrol. Food Chem 108:1061–1067

    Article  CAS  Google Scholar 

  35. Dickert FL, Hayden O (2002) Bioimprinting of polymers and sol-gel-phase. Selective detection of yeasts with imprinted polymers. Anal Chem 74:1302–1306

    Article  CAS  Google Scholar 

  36. Horemans F, Alenus J, Bongaers E, Weustenraed A, Thoelen R, Duchateau J, Lutsen L, Vanderzande D, Wagner P, Cleij TJ (2010) MIP-based sensor platforms for the detection of histamine in the nano- and micromolar range in aqueous media. Sensors Actuators B Chem 148:392–398

    Article  CAS  Google Scholar 

  37. Jafari MT, Rezaei B, Zaker B (2009) Ion mobility spectrometry as a detector for molecular imprinted polymer separation and metronidazole determination in pharmaceutical and human serum samples. Anal Chem 81:3585–3591

    Article  CAS  Google Scholar 

  38. Mayes AG, Mosbach K (1996) Molecularly imprinted polymer beads: suspension polymerization using a liquid perfluorocarbon as the dispersing phase. Anal Chem 68:3769–3774

    Article  CAS  Google Scholar 

  39. Kempe M, Mosbach K (1995) Separation of amino acids, peptides and proteins on molecularly imprinted stationary phases. J Chromatogr A 691:317–323

    Article  CAS  Google Scholar 

  40. Bossi A, Piletsky SA, Piletska EV, Righetti PG, Turner APF (2001) Surface-grafted molecularly imprinted polymers for protein recognition. Anal Chem 73:5281–5286

    Article  CAS  Google Scholar 

  41. Bossi A, Bonini F, Turner APF, Piletsky SA (2007) Molecularly imprinted polymers for the recognition of proteins: the state of the art. Biosens Bioelectron 22:1131–1137

    Article  CAS  Google Scholar 

  42. Bonini F, Piletsky S, Turner APF, Speghetti A, Bossi A (2007) Surface imprinted beads for the recognition of human serum albumin. Biosens Bioelectron 22:2322–2328

    Article  CAS  Google Scholar 

  43. Bereli N, Andac M, Baydemir G, Say R, Galaev IY, Denizli A (2008) Protein recognition via ion-coordinated molecularly imprinted supermacroporous cryogels. J Chromatogr A 1190:18–26

    Article  CAS  Google Scholar 

  44. Wang Y, Zhang Z, Jain V, Yi J, Mueller S, Sokolov J, Liu Z, Levon K, Rigas B, Rafailovich MH (2010) Potentiometric sensors based on surface molecular imprinting: detection of cancer biomarkers and viruses. Sensors Actuators B Chem 146:381–387

    Article  CAS  Google Scholar 

  45. Sherigara BS, Kutner W, D’Souza F (2003) Electrocatalytic properties and sensor applications of fullerenes and carbon nanotubes. Electroanalysis 15:753–772

    Article  CAS  Google Scholar 

  46. Jorio A, Dresselhaus MS, Dresselhaus G (2008) Carbon nanotubes. Springer-Verlag Berlin Heidelberg 111:673–709

  47. Wang Z, Liang Q, Wang YI, Luo G (2003) Carbon nanotube-intercalated graphite electrodes for simultaneous determination of dopamine and serotonin in the presence of ascorbic acid. J Electroanal Chem 540:129–134

    Article  CAS  Google Scholar 

  48. Rivas GA, Rubianes MD, Rodriguez MC, Ferreyra NF, Luque GL, Pedano ML, Miscoria SA, Parrado C (2007) Carbon nanotubes for electrochemical biosensing. Talanta 74:291–307

    Article  CAS  Google Scholar 

  49. Ensafi AA, Karimi-Maleh H (2010) Ferrocenedicarboxylic acid modified multiwall carbon nanotubes paste electrode for voltammetric determination of sulfite. Int J Electrochem Sci 5:392–406

    CAS  Google Scholar 

  50. Raoof J, Jahanshahi M, Momeni Ahangar S (2010) Nickel particles dispersed into poly (o-anisidine) and poly (oanisidine)/multi-walled carbon nanotube modified glassy carbon electrodes for electrocatalytic oxidation of methanol. Int J Electrochem Sci 5:517–530

    CAS  Google Scholar 

  51. Wooten M, Gorski W (2010) Facilitation of NADH electrooxidation at treated carbon nanotubes. Anal Chem 82:1299–1304

    Article  CAS  Google Scholar 

  52. Ardakani MM, Beitollahi H, Ganjipour B, Naeimi H (2010) Novel carbon nanotube paste electrode for simultaneous determination of norepinephrine, uric acid and d-penicillamine. Int J Electrochem Sci 5:531–546

    Google Scholar 

  53. Rezaei B, Majidi N, Ensafi AA, Karimi-Maleh H (2011) Molecularly imprinted-multiwall carbon nanotube paste electrode as a biosensor for voltammetric detection of rutin. Anal Methods 3:2510–2516

    Article  CAS  Google Scholar 

  54. Rezaei B, Mirahmadi-Zare SZ (2011) Nanoscale manipulation of prednisolone as electroactive configuration using molecularly imprinted-multiwalled carbon nanotube paste electrode. Electroanalysis 23:2724–2734

    Article  CAS  Google Scholar 

  55. Zhang Z, Hu Y, Zhang H, Luo L, Yao S (2010) Electrochemical layer-by-layer modified imprinted sensor based on multi-walled carbon nanotubes and sol-gel materials for sensitive determination of thymidine. J Electroanal Chem 644:7–12

    Article  CAS  Google Scholar 

  56. Lee W, Scholz R, Nielsch K, Gösele U (2005) A template-based electrochemical method for the synthesis of multisegmented metallic nanotubes. Angew Chem Int Ed 44:6050–6054

    Article  CAS  Google Scholar 

  57. Kan X, Zhao Y, Geng Z, Wang Z, Zhu J (2008) Composites of multiwalled carbon nanotubes and molecularly imprinted polymers for dopamine recognition. J Phys Chem C 112:4849–4854

    Article  CAS  Google Scholar 

  58. Chen P, Nien P, Hu C, Ho K (2010) Detection of uric acid based on multi-walled carbon nanotubes polymerized with a layer of molecularly imprinted PMAA. Sensors Actuators B Chem 146:466–471

    Article  CAS  Google Scholar 

  59. Zhang Z, Hu Y, Zhang H, Yao S (2010) Novel layer-by-layer assembly molecularly imprinted sol-gel sensor for selective recognition of clindamycin based on Au electrode decorated by multi-wall carbon nanotube. J Colloid Interface Sci 344:158–164

    Article  CAS  Google Scholar 

  60. Zhang Z, Hu Y, Zhang H, Luo L, Yao S (2010) Electrochemical layer-by-layer modified imprinted sensor based on multi-walled carbon nanotubes and solgel materials for sensitive determination of thymidine. J Electroanal Chem 644:7–12

    Article  CAS  Google Scholar 

  61. Zhang J, Wang Y, Lvr Xu L (2010) Electrochemical tolazoline sensor based on gold nano-particles and imprinted poly-o-aminothiophenol film. Electrochim Acta 55:4039–4044

    Article  CAS  Google Scholar 

  62. Tehrani MS, Vardini MT, Abroomand Azar P, Husain SW (2010) Molecularly imprinted polymer based PVC-membrane-coated graphite electrode for the determination of metoprolol. Int J Electrochem Sci 5:88–104

    CAS  Google Scholar 

  63. Panasyuk TL, Mirsky VM, Piletsky SA, Wolfbei OS (1999) Electropolymerized molecularly imprinted polymers as receptor layers in capacitive chemical sensors. Anal Chem 71:4609–4613

    Article  CAS  Google Scholar 

  64. Rezaei B, Rahmanian O (2011) Nanolayer treatment to realize suitable configuration for electrochemical allopurinol sensor based on molecular imprinting recognition sites on multiwall carbon nanotube surface. Sensors Actuators B Chem 160:99–104

    Article  CAS  Google Scholar 

  65. Li J, Lin XQ (2007) Electrodeposition of gold nanoclusters on overoxidized polypyrrole film modified glassy carbon electrode and its application for the simultaneous determination of epinephrine and uric acid under coexistence of ascorbic acid. Anal Chim Acta 596:222–230

    Article  CAS  Google Scholar 

  66. Grzelczak M, Pérez-Juste J, Mulvaney P, Liz-Marzán LM (2008) Shape control in gold nanoparticle synthesis. Chem Soc Rev 37:1783–1791

    Article  CAS  Google Scholar 

  67. Atta NF, Galal A, Azeb M (2011) Electrochemical morphine sensing using gold nanoparticles modified carbon paste electrode. Int J Electrochem Sci 6:5066–5081

    CAS  Google Scholar 

  68. Atta NF, Galal A, Wassel AA, Ibrahim AH (2012) Sensitive electrochemical determination of morphine using gold nanoparticles–ferrocene modified carbon paste electrode. Int J Electrochem Sci 7:10501–10518

    CAS  Google Scholar 

  69. Atta NF, Galal A, Ahmed RA (2011) Direct and simple electrochemical determination of morphine at PEDOT modified Pt electrode. Electroanalysis 23:737–746

    CAS  Google Scholar 

  70. Ensafi AA, Heydari-Bafrooei E, Rezaei B (2013) Different interaction of codeine and morphine with DNA: a concept for simultaneous determination. Biosens Bioelectron 41:627–633

    Article  CAS  Google Scholar 

  71. Mokhtari A, Karimi-Maleh H, Ensafi AA, Beitollahi H (2012) Application of modified multiwall carbon nanotubes paste electrode for simultaneous voltammetric determination of morphine and diclofenac in biological and pharmaceutical samples. Sensors Actuators B Chem 169:96–105

    Article  CAS  Google Scholar 

  72. Ensafi AA, Rezaei B, Krimi-Maleh H (2011) An ionic liquid-type multiwall carbon nanotubes paste electrode for electrochemical investigation and determination of morphine. Ionics 17:659–668

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We wish to express our gratitude to the Research Affairs Division and Research Council and Center of Excellence in Sensor and Green Chemistry of Isfahan University of Technology (IUT) and the Iranian Nanotechnology Initiative Council for their financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behzad Rezaei.

Electronic supplementary material

ESM 1

(DOC 332 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaei, B., Foroughi-Dehnavi, S. & Ensafi, A.A. Fabrication of electrochemical sensor based on molecularly imprinted polymer and nanoparticles for determination trace amounts of morphine. Ionics 21, 2969–2980 (2015). https://doi.org/10.1007/s11581-015-1458-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-015-1458-3

Keywords

Navigation