Skip to main content
Log in

Study of the surface reaction mechanism of Li4Ti5O12 anode for lithium-ion cells

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The formation of solid-electrolyte interface (SEI) film on the surface of LTO electrode at 25 and 55 °C has been investigated. It is found that the SEI film, which is mainly composed of Li2CO3, LiF, and ROCO2Li, can be formed on the surface of LTO electrode. The differences of SEI film under 25 and 55 °C are further discussed. The results reveal that the temperature has an effect on the morphology of formed SEI film. With the temperature increasing, the decomposition of carbonate species makes the SEI film became thicker and uneven, and also produces C2H4, which is attributed to the swelling of LTO cells at 55 °C. When adding 0.5 wt.% succinonitrile (SN, CN–[CH2]2–CN) in the electrolyte, the gassing behavior of the LTO cells at 3 C rate at 55 °C can be obviously suppressed and the cyclic performance of the cells also improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Yi TF, Jiang LJ, Shu J, Yue CB, Zhu RS, Qiao HB (2010) Recent development and application of Li4Ti5O12 as anode material of lithium ion battery. J Phys Chem Sol 71:1236–1242

    Article  CAS  Google Scholar 

  2. Jung HG, Jang MW, Hassoun J, Sun YK, Scrosati B (2011) A high-rate long-life Li4Ti5O12/Li[Ni0.45Co0.1Mn1.45]O4 lithium-ion battery. Nat Commun 2:1–5

    Article  Google Scholar 

  3. Kitta M, Akita T, Maeda Y, Kohyama M (2012) Study of surface reaction of spinel Li4Ti5O12 during the first lithium insertion and extraction processes using atomic force microscopy and analytical transmission electron microscopy. Langmuir 28:12384–12392

    Article  CAS  Google Scholar 

  4. Guerfi A, Sévigny S, Lagacé M, Hovington P, Kinoshita K, Zaghib K (2003) Nano-particle Li4Ti5O12 spinel as electrode for electrochemical generators. J Power Sources 119–121:88–94

    Article  Google Scholar 

  5. Venkateswarlu M, Chen CH, Do JS, Lin CW, Chou TC, Hwang BJ (2005) Electrochemical properties of nano-sized Li4Ti5O12 powders synthesized by a sol–gel process and characterized by X-ray absorption spectroscopy. J Power Sources 146:204–208

    Article  CAS  Google Scholar 

  6. Allen JL, Jow TR, Wolfenstine J (2006) Low temperature performance of nanophase Li4Ti5O12. J Power Sources 159:1340–1345

    Article  CAS  Google Scholar 

  7. Wu K, Yang J, Liu Y, Zhang Y, Wang CY, Xu J, Ning F, Wang D (2013) Investigation on gas generation of Li4Ti5O12/LiNi1/3Co1/3Mn1/3O2 cells at elevated temperature. J Power Sources 237:285–290

    Article  CAS  Google Scholar 

  8. He YB, Liu BH, Zhang C, Lv W, Yang C, Li J, Du HD, Zhang B, Yang QH, Kim JK, Kang FY (2012) Gassing in Li4Ti5O12-based batteries and its remedy. Sci Rep 2:1–9

    Google Scholar 

  9. Wu K, Yang J, Zhang Y, Wang CY, Wang DY (2012) Investigation on Li4Ti5O12 batteries developed for hybrid electric vehicle. J Applied Electrochem 42:989–995

    Article  CAS  Google Scholar 

  10. He YB, Liu M, Huang ZD, Zhang B, Yu Y, Li B, Kang F, Kim JK (2013) Effect of solid electrolyte interface (SEI) film on cyclic performance of Li4Ti5O12 anodes for Li ion batteries. J Power Sources 239:269–276

    Article  CAS  Google Scholar 

  11. He YB, Ning F, Li B, Song QS, Lv W, Du H, Zhai D, Su F, Yang QH, Kang F (2012) Carbon coating to suppress the reduction decomposition of electrolyte on the Li4Ti5O12 electrode. J Power Sources 202:253–261

    Article  CAS  Google Scholar 

  12. Li X, Qu M, Yu Z (2009) Structural and electrochemical performances of Li4Ti5−xZrxO12 as anode material for lithium-ion batteries. J Alloys Compd 487:L12–L17

    Article  CAS  Google Scholar 

  13. Li X, Tang S, Qu M, Huang P, Li W, Yu Z (2014) A novel spherically porous Zr-doped spinel lithium titanate (Li4Ti5-xZrxO12) for high rate lithium ion batteries. J Alloys Compd 588:17–24

    Article  CAS  Google Scholar 

  14. Dedryvère R, Foix D, Franger S, Patoux S, Daniel L, Gonbeau D (2010) Electrode/Electrolyte interface reactivity in high-voltage spinel LiMn1.6Ni0.4O4/Li4Ti5O12 Lithium-Ion battery. J Phys Chem C 114:10999–11008

    Article  Google Scholar 

  15. Dedryvère R, Laruelle S, Grugeon S, Gireaud L, Tarascon J-M, Gonbeau D (2005) XPS Identification of the Organic and Inorganic Components of the Electrode/Electrolyte Interface Formed on a Metallic Cathode. J Electrochem Soc 152:A689–A696

    Article  Google Scholar 

  16. Andersson AM, Abraham DP, Haasch R, MacLaren S, Liu J, Amine K (2002) Surface Characterization of Electrodes from High Power Lithium-Ion Batteries. J Electrochem Soc 149:A1358–A1369

    Article  CAS  Google Scholar 

  17. Dedryvère R, Martineza H, Leroy S, Lemordant D, Bonhomme F, Biensan P, Gonbeau D (2007) Surface film formation on electrodes in a LiCoO2/graphite cell: A step by step XPS study. J Power Sources 174:462–468

    Article  Google Scholar 

  18. Ogumi Z, Sano A, Inaba M, Abe T (2001) Pyrolysis/gas chromatography/mass spectroscopy analysis of the surface film formed on graphite negative electrode. J Power Sources 97–98:156–158

    Article  Google Scholar 

  19. Herstedt M, Andersson AM, Rensmo H, Siegbahn H, Edström K (2004) Characterisation of the SEI formed on natural graphite in PC-based electrolytes. Electrochim Aca 49:4939–4947

    Article  CAS  Google Scholar 

  20. Sloop SE, Pugh JK, Wang S, Kerr JB, Kinoshita K (2001) Chemical reactivity of PF5 and LiPF6 in ethylene carbonate/dimethyl carbonate solutions. Electrochem Solid St 4:A42–A44

    Article  CAS  Google Scholar 

  21. Yang CR, Wang YY, Wan CC (1998) Composition analysis of the passive film on the carbon electrode of a lithium-ion battery with an EC-based electrolyte. J Power Sources 72:66–70

    Article  CAS  Google Scholar 

  22. Aurbach D, Ein-Eli Y, Markovsky B, Zaban A, Luski S, Carmeli Y, Yamin H (1995) The Study of Electrolyte Solutions Based on Ethylene and Diethyl Carbonates for Rechargeable Li Batteries II. Graphite Electrodes. J Electrochem Soc 142:2882–2890

    Article  CAS  Google Scholar 

  23. Aurbach D, Zaban A, Schechter A, Ein-Eli Y, Zinigrad E, Markovsky B (1995) The study of electrolyte solutions based on ethylene and diethyl carbonates for rechargeable Li batteries I. Li Metal Anodes. J Electrochem Soc 142:2873–2882

    Article  CAS  Google Scholar 

  24. Ota H, Kominato A, Chun WJ, Yasukawa E, Kasuya S (2003) Effect of cyclic phosphate additive in nonflammable electrolyte. J Power Sources 119–121: pp. 393–398

    Article  Google Scholar 

  25. Belharouak I, Koenig Jr GM, Tan T, Yumoto H, Ota N, Amine K (2012) Performance degradation and gassing of Li4Ti5O12/LiMn2O4 Lithium-Ion cells. J Electrochem Soc 159:A1165–A1170

    Article  CAS  Google Scholar 

  26. Richard MN, Dahn JR (1999) Accelerating rate calorimetry study on the thermal stability of lithium intercalated graphite in electrolyte I. Experimental. J Electrochem Soc 146:2068–2077

    Article  CAS  Google Scholar 

  27. Li W, Li X, Chen MZ, Xie ZW, Zhang JX, Dong SQ, Qu MZ (2014) AlF3 modification to suppress the gas generation of Li4Ti5O12 anode battery. Electrochim Acta 139:104–110

    Article  CAS  Google Scholar 

  28. Shin JS, Han CH, Jung UH, Lee SI, Kim HJ, Kim K (2002) Effect of Li2CO3 additive on gas generation in lithium-ion batteries. J Power Sources 109:47–52

    Article  CAS  Google Scholar 

  29. Naji A, Ghanbaja J, Willmann P, Billaud D (2000) New halogenated additives to propylene carbonate based electrolytes for lithium-ion batteries. Electrochim Acta 45:1893–1899

    Article  CAS  Google Scholar 

  30. Kim YS, Kim TH, Lee H, Song HK (2011) Electronegativity-induced enhancement of thermal stability by succinonitrile as an additive for Li ion batteries. Energy Environ Sci 4:4038–4045

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was carried out by financial support from the CAS western light program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weifeng Fan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, J., Gong, B., Zhang, Q. et al. Study of the surface reaction mechanism of Li4Ti5O12 anode for lithium-ion cells. Ionics 21, 2409–2416 (2015). https://doi.org/10.1007/s11581-015-1435-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-015-1435-x

Keywords

Navigation