Skip to main content
Log in

A piperidinium-based ionic liquid electrolyte to enhance the electrochemical properties of LiFePO4 battery

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A piperidinium-based ionic liquid, N-methylpiperidinium-N-acetate bis(trifluoromethylsulfonyl)imide ([MMEPip][TFSI]), was synthesized and used as an additive to the electrolyte of LiFePO4 battery. The electrochemical performance of the electrolytes based on different contents of [MMEPip][TFSI] has been investigated. It was found that the [MMEPip][TFSI] significantly improved the high-rate performance and cyclability of the LiFePO4 cells. In the optimized electrolyte with 3 wt% [MMEPip][TFSI], 70 % capacity can be retained with an increase in rate to 3.5 C, which was 8 % higher than that of electrolyte without [MMEPip][TFSI]. For the Li/LiFePO4 half-cells, after 100 cycles at 0.1 C, the discharge capacity retention was 78 % in the electrolyte without ionic liquid. However, in the electrolyte with 3 wt% [MMEPip][TFSI], it displayed a high capacity retention of 91 %. The good electrochemical performances indicated that the [MMEPip][TFSI] additive would positively enhance the electrochemical performance of LiFePO4 battery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wongittharoma N, Wang CH, Wang YC, Fey GTK, Li HY, Wu TY, Lee TC, Chang JK (2014) Charge-storage performance of Li/LiFePO4 cells with additive incorporated ionic liquid electrolytes at various temperatures. J Power Sources 260:268–275

    Article  Google Scholar 

  2. Yang J, Zhou XY, Zou YL, Tang JJ (2011) A hierarchical porous carbon material for high power, lithium ion batteries. Electrochim Acta 56:8576–8581

    Article  CAS  Google Scholar 

  3. Jansen AN, Dees DW, Abraham DP, Amine K, Henriksen GL (2007) Low-temperature study of lithium-ion cells using a LiSn micro-reference electrode. J Power Sources 174:373–379

    Article  CAS  Google Scholar 

  4. Contestabile M, Morselli M, Paraventi R, Neat RJ (2003) A comparative study on the effect of electrolyte/additives on the performance of ICP383562 Li-ion polymer (soft-pack) cells. J Power Sources 119–121:943–947

    Article  Google Scholar 

  5. Sasaki T, Abe T, Iriyama Y, Inaba M, Ogumi Z (2005) Suppression of an alkyl dicarbonate formation in Li-ion cells batteries, fuel cells, and energy conversion. J Electrochem Soc 152:A2046–A2050

    Article  CAS  Google Scholar 

  6. McMillan R, Slegr H, Shu ZX, Wang WD (1999) Fluoroethylene carbonate electrolyte and its use in lithium ion batteries with graphite anodes. J Power Sources 81–82:20–26

    Article  Google Scholar 

  7. Wrodnigg G, Wrodnigg T, Besenhard J, Winter M (1999) Propylene sulfite as film-forming electrolyte additive in lithium ion batteries. Electrochem Commun 1:148–150

    Article  CAS  Google Scholar 

  8. Korepp C, Santner HJ, Fujii T, Ue M, Besenhard JO, Möller KC, Winter M (2006) 2-Cyanofuran—a novel vinylene electrolyte additive for PC-based electrolytes in lithium-ion batteries. J Power Sources 158:578–582

    Article  CAS  Google Scholar 

  9. Sakaebe H, Matsumoto H (2003) N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide (PP13-TFSI)—novel electrolyte base for Li battery. Electrochem Commun 5:594–598

    Article  CAS  Google Scholar 

  10. Huddleston JG, Visser AE, Reichert WM, Willauer HD, Broker GA, Rogers RD (2001) Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chem 3:156–164

    Article  CAS  Google Scholar 

  11. Ohno H (2005) Electrochemical aspects of ionic liquids. Wiley, New Jersey

    Book  Google Scholar 

  12. Fernicola A, Scrosati B, Ohno H (2006) Potentialities of ionic liquids as new electrolyte media in advanced electrochemical devices. Ionics 12:95–102

    Article  CAS  Google Scholar 

  13. Armand M, Endres F, MacFarlane DR, Ohno H, Scrosati B (2009) Ionic-liquid materials for the electrochemical challenges of the future. Nat Mater 8:621–629

    Article  CAS  Google Scholar 

  14. Galinski M, Lewandowski A, Stepniak I (2006) Ionic liquids as electrolytes. Electrochim Acta 51:5567–5580

    Article  CAS  Google Scholar 

  15. Sun XG, Dai S (2010) A novel amperometric sensor for peracetic acid based on a polybenzimidazole-modified gold electrode. Electrochim Acta 55:4618–4626

    Article  CAS  Google Scholar 

  16. Ishikawa M, Sugimoto T, Kikuta M, Ishiko E, Kono M (2006) Pure ionic liquid electrolytes compatible with a graphitized carbon negative electrode in rechargeable lithium-ion batteries. J Power Sources 162:658–662

    Article  CAS  Google Scholar 

  17. Wongittharom N, Lee TC, Hsu CH, Fey GT, Huang KP, Chang JK (2013) Electrochemical performance of rechargeable Li/LiFePO4 cells with ionic liquid electrolyte: effects of Li salt at 25 °C and 50 °C. J Power Sources 240:676–682

    Article  CAS  Google Scholar 

  18. Xiang HF, Yin B, Wang H, Lin HW, Ge XW, Xie S, Chen CH (2010) Improving electrochemical properties of room temperature ionic liquid (RTIL) based electrolyte for Li-ion batteries. Electrochim Acta 55:5204–5209

    Article  CAS  Google Scholar 

  19. Sakaebe H, Matsumoto H, Tatsumi K (2005) Discharge-charge properties of Li/LiCoO2 cell using room temperature ionic liquids (RTILs) based on quaternary ammonium cation-effect of the structure. J Power Sources 146:693–697

    Article  CAS  Google Scholar 

  20. Katayama Y, Yukumoto M, Miura T (2003) Electrochemical intercalation of lithium into graphite in room-temperature molten salt containing ethylene carbonate. Electrochem Solid-State Lett 6:A96–A97

    Article  CAS  Google Scholar 

  21. Zhang ZX, Zhou HY, Yang L, Tachibana K, Kamijima K, Xu J (2008) Asymmetrical dicationic ionic liquids based on both imidazolium and aliphatic ammonium as potential electrolyte additives applied to lithium secondary batteries. Electrochim Acta 53:4833–4838

    Article  CAS  Google Scholar 

  22. Wang ZN, Cai YJ, Dong T, Chen SM, Lu XM (2013) Triethylbutylammonium bis(trifluoromethanesulphonyl)imide ionic liquid as an effective electrolyte additive for Li-ion batteries. Ionics 19:887–894

    Article  CAS  Google Scholar 

  23. Mai YJ, Luo H, Zhao XY, Wang JL, Davis J, Lyons LJ, Zhang LZ (2014) Organosilicon functionalized quaternary ammonium ionic liquids as electrolytes for lithium-ion batteries. Ionics 20:1207–1215

    Article  CAS  Google Scholar 

  24. Lee JS, Quan ND, Hwang JM, Bae JY, Kim H, Cho BW, Kim HS, Lee H (2006) Ionic liquids containing an ester group as potential electrolytes. Electrochem Commun 8:460–464

    Article  CAS  Google Scholar 

  25. Gholamreza VN, Mostafa V, Morteza A, Ibrahim A (2012) Effect of temperature on the physical properties of 1-butyl-3-methylimidazolium based ionic liquids with thiocyanate and tetrafluoroborate anions, and 1-hexyl-3-methylimidazolium with tetrafluoroborate and hexafluorophosphate anions. J Chem Thermodyn 54:148–154

    Article  Google Scholar 

  26. Okoturo OO, Vandernoot TJ (2004) Temperature dependence of viscosity for room temperature ionic liquids. J Electroanal Chem 568:167–181

    Article  CAS  Google Scholar 

  27. Bonhote P, Dias A, Papageorigiou N, Kalyanasundaram K, Grätzel M (1996) Hydrophobic, highly conductive ambient-temperature molten salts. Inorg Chem 35:1168–1178

    Article  CAS  Google Scholar 

  28. Kanazawa A, Tsutsumi O, Ikeda T, Nagase Y (1997) Novel thermotropic liquid crystals without a rigid core formed by amphiphiles having phosphonium ions. J Am Chem Soc 119:7670–7675

    Article  CAS  Google Scholar 

  29. Fang SH, Jin Y, Yang L, Hirano SI, Tachibana K, Katayama S (2011) Functionalized ionic liquids based on quaternary ammonium cations with three or four ether groups as new electrolytes for lithium battery. Electrochim Acta 56:4663–4671

    Article  CAS  Google Scholar 

  30. Ren R, Zuo Y, Zhou Q, Zhang HL, Zhang SJ (2011) Density, excess molar volume and conductivity of binary mixtures of the ionic liquid 1,2-dimethyl-3-hexylimidazolium bis(trifluoromethylsulfonyl)imide and dimethyl carbonate. J Chem Eng Data 56:27–30

    Article  CAS  Google Scholar 

  31. Kunze M, Jeong S, Paillard E, Schönhoff M, Winter M, Passerini S (2011) New insights to self-aggregation in ionic liquid electrolytes for high-energy electrochemical devices. Adv Energy Mater 1:274–281

    Article  CAS  Google Scholar 

  32. Evans J, Vincent CA, Bruce PG (1987) Electrochemical measurement of transference numbers in polymer electrolytes. Polymer 28(13):2324–2328

    Article  CAS  Google Scholar 

  33. Zugmann S, Fleischmann M, Amereller M, Gschwind RM, Wiemhöfer HD, Gores HJ (2011) Measurement of transference numbers for lithium ion electrolytes via four different methods, a comparative study. Electrochim Acta 56:3926–3933

    Article  CAS  Google Scholar 

  34. Yoon H, Howlett PC, Best AS, Forsyth M, MacFarlane DR (2013) Fast charge/discharge of Li Metal batteries using an ionic liquid electrolyte. J Electrochem Soc 160(10):A1629–A1637

    Article  CAS  Google Scholar 

  35. Evans J, Vincent CA, Bruce PG (1987) Electrochemical measurement of transference numbers in polymer electrolytes. Polymer 28:2324–2328

    Article  CAS  Google Scholar 

  36. Zhao JS, Wang L, He XM, Wan CR, Jiang CY (2008) Determination of lithium-ion transference numbers in LiPF6-PC solutions based on electrochemical polarization and NMR measurements. J Electrochem Soc 155(10):A292–A296

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the 973 program (No. 2015CB251401), the National Natural Science Foundation of China (No. 51304183), the Special Funds of the National Natural Science Foundation of China (No. 21127011), the International Cooperation and Exchange of the National Natural Science Foundation of China (No. 21210006), and the Program of National High Technology Research and Development Program of China (863 Program) (No. 2012AA063001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suojiang Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 3040 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, T., Zhang, L., Chen, S. et al. A piperidinium-based ionic liquid electrolyte to enhance the electrochemical properties of LiFePO4 battery. Ionics 21, 2109–2117 (2015). https://doi.org/10.1007/s11581-015-1388-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-015-1388-0

Keywords

Navigation