Skip to main content
Log in

Silver nanoparticles-β-cyclodextrin-graphene nanocomposites based biosensor for guanine and adenine sensing

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Graphene deposited with silver nanoparticles (AgNPs-β-CD-Gr) has been synthesized by thermal reduction of graphene oxide and silver nitrate via β-cyclodextrin (β-CD). It offers a simple, green, and efficient procedure to yield nanocomposites with silver nanoparticles anchored on graphene support, uniformly and stably. Guanine and adenine were simultaneously detected on the modified electrode (AgNPs-β-CD-Gr/GCE) by differential pulse voltammograms. The AgNPs-β-CD-Gr/GCE obviously improved the voltammetric response of guanine and adenine demonstrating that the synergistic effect of silver nanoparticles and graphene can significantly enhance the detecting sensitivity of guanine and adenine. The electrochemical biosensor based on AgNPs-β-CD-Gr exhibits wide linear ranges of 0.3–200 and 0.5–250 μM with detection limits of 0.09 and 0.15 μM for guanine and adenine, respectively. The proposed method was also applied for the measurement of trace-level of these purine bases in herring sperm DNA (dsDNA). The results suggest that the nanocomposite has a potential application for electrocatalytic biosensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lu J, Drzal LT, Worden RM, Lee I (2007) Chem Mater 19:6240–6246

    Article  CAS  Google Scholar 

  2. Liu F, Piao Y, Choi JS, Seo TS (2013) Biosens Bioelectron 50:387–392

    Article  CAS  Google Scholar 

  3. Xia Y, Li W, Wang M, Nie Z, Deng C, Yao S (2013) Talanta 107:55–60

    Article  CAS  Google Scholar 

  4. Lu J, Do I, Drzal LT, Worden RM, Lee I (2008) ACS Nano 2:1825–1832

    Article  CAS  Google Scholar 

  5. Georgakilas V, Otyepka M, Bourlinos AB, Chandra V, Kim N, Kemp KC, Hobza P, Zboril R, Kim KS (2012) Chem Rev 112:6156–6214

    Article  CAS  Google Scholar 

  6. Kamat PV (2009) J Phys Chem Letters 1:520–527

    Article  Google Scholar 

  7. Wu ZS, Ren W, Wen L, Gao L, Zhao J, Chen Z, Zhou G, Li F, Cheng HM (2010) ACS Nano 4:3187–3194

    Article  CAS  Google Scholar 

  8. Zhou X, Huang X, Qi X, Wu S, Xue C, Boey FYC, Yan Q, Chen P, Zhang H (2009) J Phys Chem C 113:10842–10846

    Article  CAS  Google Scholar 

  9. Yokomizo Y, Krishnamurthy S, Kamat PV (2013) Catal Today 199:36–41

    Article  CAS  Google Scholar 

  10. Vinodgopal K, Neppolian B, Lightcap IV, Grieser F, Ashokkumar M, Kamat PV (2010) J Phys Chem Letters 1:1987–1993

    Article  CAS  Google Scholar 

  11. Seger B, Kamat PV (2009) J Phys Chem C 113:7990–7995

    Article  CAS  Google Scholar 

  12. Yokomizo Y, Krishnamurthy S, Kamat PV (2013) Catal Today 199:36–41

    Article  CAS  Google Scholar 

  13. Guo S, Du Y, Yang X, Dong S (2011) Wang E. Anal Chem 83:8035–8040

    Article  CAS  Google Scholar 

  14. Huang KJ, Li J, Wu YY, Liu YM (2013) Bioelectrochemistry 90:18–23

    Article  CAS  Google Scholar 

  15. Huang KJ, Wang L, Liu YJ, Liu YM, Wang HB, Gan T, Wang LL (2013) Int J Hydrog Energy 38:14027–14034

    Article  CAS  Google Scholar 

  16. Huang KJ, Wang L, Liu YJ, Gan T, Liu YM, Wang LL, Fan Y (2013) Electrochim Acta 107:379–387

    Article  CAS  Google Scholar 

  17. Sondi I, Goia DV, Matijević E (2003) J Colloid Interface Sci 260:75–81

    Article  CAS  Google Scholar 

  18. Song W, Li H, Liu H, Wu Z, Qiang W, Xu D (2013) Electrochem Commun 31:16–19

    Article  CAS  Google Scholar 

  19. Lian W, Liu S, Yu J, Li J, Cui M, Xu W, Huang J (2013) Biosens Bioelectron 44:70–76

    Article  CAS  Google Scholar 

  20. Huang KJ, Wang L, Li J, Yu M, Liu Y-M (2013) Microchim Acta 180:751–757

    Article  CAS  Google Scholar 

  21. Huang KJ, Wang L, Wang H-B, Gan T, Wu YY, Li J, Liu YM (2013) Talanta 114:43–48

    Article  CAS  Google Scholar 

  22. Fan Z, Liu B, Liu X, Li Z, Wang H, Yang S, Wang J (2013) Electrochim Acta 109:602–608

    Article  CAS  Google Scholar 

  23. Trewyn RW, Glaser R, Kelly DR, Jackson DG, Graham WP, Speicher CE (1982) Cancer 49:2513–2517

    Article  CAS  Google Scholar 

  24. Marvel C, Rowe J, Bremer E, Moskal J (1994) Mol Chem Neuropathol 21:353–368

    Article  CAS  Google Scholar 

  25. Yang FQ, Guan J, Li SP (2007) Talanta 73:269–273

    Article  CAS  Google Scholar 

  26. Ardon O, Procter M, Tvrdik T, Longo N, Mao R (2014) Mol Genet Metab Rep 1:71–84

    Article  CAS  Google Scholar 

  27. Campbell F, Compton R (2010) Anal Bioanal Chem 396:241–259

    Article  CAS  Google Scholar 

  28. Abbaspour A, Ghaffarinejad A (2010) Electrochim Acta 55:1090–1096

    Article  CAS  Google Scholar 

  29. Shahrokhian S, Rastgar S, Amini MK, Adeli M (2012) Bioelectrochemistry 86:78–86

    Article  CAS  Google Scholar 

  30. Akhavan O, Ghaderi E, Rahighi R (2012) ACS Nano 6:2904–2916

    Article  CAS  Google Scholar 

  31. Randviir EP, Banks CE (2012) RSC Advances 2:5800–5805

    Article  CAS  Google Scholar 

  32. Li C, Qiu X, Ling Y (2013) J Electroanal Chem 704:44–49

    Article  CAS  Google Scholar 

  33. Yin H, Zhou Y, Ma Q, Ai S, Ju P, Zhu L, Lu L (2010) Process Biochem 45:1707–1712

    Article  CAS  Google Scholar 

  34. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Carbon 45:1558–1565

    Article  CAS  Google Scholar 

  35. Tian X, Cheng C, Yuan H, Du J, Xiao D, Xie S, Choi MM (2012) Talanta 93:79–85

    Article  CAS  Google Scholar 

  36. Shen Q, Wang X (2009) J Electroanal Chem 632:149–153

    Article  CAS  Google Scholar 

  37. Xing Y (2004) J Phys Chem B 108:19255–19259

    Article  CAS  Google Scholar 

  38. Hassan HM, Abdelsayed V, Abd El Rahman SK, AbouZeid KM, Terner J, El-Shall MS, Al-Resayes SI, El-Azhary AA (2009) J Mater Chem 19:3832–3837

    Article  CAS  Google Scholar 

  39. Iliescu T, Baia M, Miclăuş V (2004) Eur J Pharm Sci 22:487–495

    Article  CAS  Google Scholar 

  40. Heise HM, Kuckuk R, Bereck A, Riegel D (2010) Vib Spectrosc 53:19–23

    Article  CAS  Google Scholar 

  41. Eda G, Fanchini G, Chhowalla M (2008) Nat Nanotechnol 3:270–274

    Article  CAS  Google Scholar 

  42. Schniepp HC, Li J-L, McAllister MJ, Sai H, Herrera-Alonso M, Adamson DH, Prud'homme RK, Car R, Saville DA, Aksay IA (2006) J Phys Chem B 110:8535–8539

    Article  CAS  Google Scholar 

  43. Guo Y, Guo S, Ren J, Zhai Y, Dong S, Wang E (2010) ACS Nano 4:4001–4010

    Article  CAS  Google Scholar 

  44. Wang Z, Xiao S, Chen Y (2006) J Electroanal Chem 589:237–242

    Article  CAS  Google Scholar 

  45. Guo Y, Guo S, Ren J, Zhai Y, Dong S, Wang E (2010) ACS NANO 4:4001–4010

    Article  CAS  Google Scholar 

  46. Genereux JC (2009) Barton JK. Chem Rev 110:1642–1662

    Article  Google Scholar 

  47. Fan Y, Huang KJ, Niu DJ, Yang CP, Jing QS (2011) Electrochim Acta 56:4685–4690

    Article  CAS  Google Scholar 

  48. Lee GJ, Lee HM, Uhm YR, Lee MK, Rhee CK (2008) Electrochem Commun 10:1920–1923

    Article  CAS  Google Scholar 

  49. Sun W, Li Y, Duan Y, Jiao K (2008) Biosens Bioelectron 24:988–993

    Article  CAS  Google Scholar 

  50. Zen JM, Chang MR, Ilangovan G (1999) Analyst 124:679–684

    Article  CAS  Google Scholar 

  51. Davidson JN, (1972) The biochemistry of the nucleic acids: Academic Press

Download references

Acknowledgments

This work was financially supported by the National Nature Science Foundation of China (No. 51372206), Graduate Starting Seed Fund of Northwestern Polytechnical University (Z2013150 and Z2014022), and Doctorate Innovation Foundation of Northwestern Polytechnical University (CX201321).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyan Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hui, Y., Ma, X., Hou, X. et al. Silver nanoparticles-β-cyclodextrin-graphene nanocomposites based biosensor for guanine and adenine sensing. Ionics 21, 1751–1759 (2015). https://doi.org/10.1007/s11581-014-1343-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-014-1343-5

Keywords

Navigation