Skip to main content
Log in

Synthesis and electrochemical properties of P2-Na2/3Ni1/3Mn2/3O2

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The pure phase P2-Na2/3Ni1/3Mn2/3O2 was synthesized by a solid reaction process. The optimum calcination temperature was 850 °C. The as-prepared product delivered a capacity of 158 mAh g−1 in the voltage range of 2–4.5 V, and there was a phase transition from P2 to O2 at about 4.2 V in the charge process. The P2 phase exhibited excellent intercalation behavior of Na ions. The reversible capacity is about 88.5 mAh g−1 at 0.1 C in the voltage range of 2–4 V at room temperature. At an elevated temperature of 55 °C, it could remain as an excellent capacity retention at low current rates. The P2-Na2/3Ni1/3Mn2/3O2 is a potential cathode material for sodium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kim SW, Seo D-H, Ma X, Ceder G, Kang K (2012) Adv Energy Mater 2:710–721

    Article  CAS  Google Scholar 

  2. Jian Z, Zhao L, Pan H, Hu Y-S, Li H, Chen W, Chen L (2012) Electrochem Commun 14:86–89

    Article  CAS  Google Scholar 

  3. Tripathi R, Wood SM, Islam MS, Nazar LF (2013) Energy Environ Sci 6:2257–2264

    Article  CAS  Google Scholar 

  4. Nose M, Nakayama H, Nobuhara K, Yamaguchi H, Nakanishi S, Iba H (2013) J Power Sources 234:175–179

    Article  CAS  Google Scholar 

  5. Zhu CB, Song KP, Aken PAV, Maier J, Yu Y (2014) Nano Lett 14:2175–2180

    Article  CAS  Google Scholar 

  6. Chihara K, Kitajou A, Gocheva ID, Okada S, Yamaki JI (2013) J Power Sources 227:80–85

    Article  CAS  Google Scholar 

  7. Barpanda P, Liu GD, Ling CD, Tamaru M, Avdeev M, Chung SC, Yamada Y, Yamada A (2013) Chem Mater 25:3480–3487

    Article  CAS  Google Scholar 

  8. Tamaru M, Wang XF, Qkubo M (2013) Electrochem Commun 33:23–36

    Article  CAS  Google Scholar 

  9. Kim DH, Lee E, Lu WQ, Rood S, Johnson CS (2012) Electrochem Commun 18:66–69

    Article  CAS  Google Scholar 

  10. Ma X, Chen H, Ceder G (2011) J Electrochem Soc 158:A1307–A1311

    Article  CAS  Google Scholar 

  11. Komaba S, Takei C, Nakayama T, Ogata A, Yabuuchi N (2010) Electrochem Commun 12:355–358

    Article  CAS  Google Scholar 

  12. Hosono E, Saito T, Hoshino J, Okubo M, Saito Y, Nishio-Hamane D, Kudo T, Zhou H (2012) J Power Sources 217:43–46

    Article  CAS  Google Scholar 

  13. Yoshida H, Yabuuchi N, Komaba S (2013) Electrochem Commun 34:60–63

    Article  CAS  Google Scholar 

  14. Ruffo R, Fathi R, Kim DJ, Jung YH, Mari CM, Kim DK (2013) Electrochim Acta 108:575–582

    Article  CAS  Google Scholar 

  15. Su DW, Wang CY, Ahn HJ, Wang GX (2013) Chem Eur J 19:10884–10889

    Article  CAS  Google Scholar 

  16. Liang SQ, Chen T, Pan AQ, Liu DW, Zhu QY, Cao GZ (2013) ACS Appl Mater Interfaces 5:11913–11917

    Article  CAS  Google Scholar 

  17. Cabana J, Chernova NA, Xiao J, Roppolo M, Aldi KA, Whittingham MS, Grey CP (2013) Inorg Chem 52:8540–8550

    Article  CAS  Google Scholar 

  18. Qian JF, Zhou M, Cao YL, Ai XP, Yang HX (2012) Adv Funct Mater 2:410–414

    CAS  Google Scholar 

  19. Wang L, Lu YH, Liu J, Xu MW, Cheng JG, Zhang DW, Goodenough JB (2013) Angew Chem Int Ed 52:1964–1967

    Article  CAS  Google Scholar 

  20. Lu ZH, Dahn JR (2001) J Electrochem Soc 148(11):A1225–A1229

    Article  CAS  Google Scholar 

  21. Wang H, Yang BJ, Liao XZ, Xu J, Yang DZ, He YS, Ma ZF (2013) Electrochim Acta 113:200–204

    Article  CAS  Google Scholar 

  22. Buchholz D, Chagas LG, Winter M, Passerini S (2013) Electrochim Acta 110:208–213

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by Natural Science Foundation of LiaoNing Province, China (2014010044-301) and Natural Science Foundation of China (51172242).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guoqiang Liu or Lei Wen.

Additional information

Guoqiang Liu and Lei Wen contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, G., Wen, L., Li, Y. et al. Synthesis and electrochemical properties of P2-Na2/3Ni1/3Mn2/3O2 . Ionics 21, 1011–1016 (2015). https://doi.org/10.1007/s11581-014-1249-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-014-1249-2

Keywords

Navigation