Skip to main content
Log in

The electrochemical behaviors of the Mg-7.5Li-3.5Al and Mg-7.5Li-3.5Al-1Y electrodes in sodium chloride solution

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Mg-7.5Li-3.5Al and Mg-7.5Li-3.5Al-1Y alloys are prepared, and their electrochemical performances are investigated by potentiodynamic polarization, potentiostatic current-time curves, electrochemical impedance spectroscopy, scanning electron microscopy (SEM), varying load performances, and utilization efficiencies. The performances of the Mg-H2O2 semi-fuel cells with the above alloy anodes are also determined. It is found that the Mg-7.5Li-3.5Al-1Y electrode has higher discharge activity and better corrosion resistance than Mg-7.5Li-3.5Al electrode in 0.7 mol L−1 NaCl solution. SEM studies indicate that the alloying element Y prevents the formation of dense oxide film on the alloy surface and facilitates peeling off of the oxidation products. The utilization efficiencies of the alloys increase in the order: Mg-7.5Li-3.5Al < Mg-7.5Li-3.5Al-1Y. The Mg-H2O2 semi-fuel cell with Mg-7.5Li-3.5Al-1Y alloy as the anode presents a maximum power density of 92 mW cm−2 at room temperature, which is higher than that with Mg-7.5Li-3.5Al anode (85 mW cm−2). Y is a “promotion element” in the alloy, and the Mg-7.5Li-3.5Al-1Y alloy electrode exhibits better performances comparing to the Mg-7.5Li-3.5Al alloy electrode.

The Mg-7.5Li-3.5Al-1Y electrode shows better discharge performances than that of the Mg-7.5Li-3.5-Al electrode at the same discharging potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hasvold O, Storkersen NJ, Forseth S, Lian T (2006) Power sources for autonomous underwater vehicles. J Power Sources 162:935–942

    Article  CAS  Google Scholar 

  2. Medeiros MG, Bessette RR, Deschenes CM, Patrissi CJ, Carreiro LG, Tucker SP, Atwater DW (2004) Magnesium-solution phase catholyte semi-fuel cell for undersea vehicles. J Power Sources 136:226–2311

    Article  CAS  Google Scholar 

  3. Bessette RR, Medeiros MG, Patrissi CJ, Deschenes CM, LaFratta CN (2001) Development and characterization of a novel carbon fiber based cathode for semi-fuel cell applications. J Power Sources 96:240–244

    Article  CAS  Google Scholar 

  4. Bessette RR, Cichon JM, Dischert DW, Dow EG (1999) A study of cathode catalysis for the aluminium/hydrogen peroxide semi-fuel cell. J Power Sources 80:248–253

    Article  CAS  Google Scholar 

  5. Yang WQ, Yang SH, Sun W, Sun GQ, Xin Q (2006) Nanostructured silver catalyzed nickel foam cathode for an aluminum-hydrogen peroxide fuel cell. J Power Sources 160:1420–1424

    Article  CAS  Google Scholar 

  6. Yang WQ, Yang SH, Sun W, Sun GQ, Xin Q (2006) Nanostructured palladium-silver coated nickel foam cathode for magnesium-hydrogen peroxide fuel cells. Electrochim Acta 52:9–14

    Article  Google Scholar 

  7. Brodrecht DJ, Rusek JJ (2003) Aluminum–hydrogen peroxide fuel-cell studies. Appl Energy 74:113–124

    Article  CAS  Google Scholar 

  8. Medeiros MG, Zoski CG (1998) Investigation of a sodium hypochlorite catholyte for an aluminum aqueous battery system. J Phys Chem B 102:9908–9914

    Article  CAS  Google Scholar 

  9. Ono S, Asami K, Osaka T, Masuko N (1996) Structure of anodic films on magnesium. J Electrochem Soc 143:106–109

    Article  Google Scholar 

  10. Song DL, Jing XY, Wang J (2011) Microwave-assisted synthesis of lanthanum conversion coating on Mg–Li alloy and its corrosion resistance. Corros Sci 53:3651–3656

    Article  CAS  Google Scholar 

  11. Yang WQ, Yang SH, Sun W (2006) Nanostructured palladium-silver coated nickel foam cathode for magnesium–hydrogen peroxide fuel cells. Electrochim Acta 52:9–14

    Article  Google Scholar 

  12. Medeiros MG, Bessette RR, Deschenes CM, Atwater DW (2001) Optimization of the magnesium-solution phase catholyte semi-fuel cell for long duration testing. J Power Sources 96:236–239

    Article  CAS  Google Scholar 

  13. Medeiros MG, Dow EG (1999) Magnesium-solution phase catholyte seawater electrochemical system. J Power Sources 80:78–82

    Article  CAS  Google Scholar 

  14. Sivashanmugam A, Kumar TP, Renganathan NG, Gopukumarl S (2004) Performance of a magnesium-lithium alloy as an anode for magnesium batteries. J Appl Electrochem 34:1135–1139

    Article  CAS  Google Scholar 

  15. Hamlen RP, Atwater DW (2002) in Handbook of batteries, ed. Linden D, Reddy TB, McGraw-Hill, 3rd edn, p. 381

  16. Cao DX, Wu L, Sun Y, Wang GL, Lv YZ (2008) Electrochemical behavior of Mg-Li, Mg-Li-Al and Mg-Li-Al-Ce in sodium chloride solution. J Power Sources 177:624–630

    Article  CAS  Google Scholar 

  17. Lv YZ, Liu M, Xu Y, Cao DX, Feng J (2013) The electrochemical behaviors of Mge-8Li-3Al-0.5Zn and Mg-8Li-3Al-1.0Zn in sodium chloride solution. J Power Sources 225:124–128

    Article  CAS  Google Scholar 

  18. Lv YZ, Jin YZ, Wang ZB, Li YF, Wang L, Cao DX (2014) The effect of sodium stannate as the electrolyte additive on the electrochemical performances of the Mg-8Li-1Y electrode in NaCl solution. RSC Adv 4:18074–18079

    Article  CAS  Google Scholar 

  19. Kumar BVR, Sathyanarayana S (1983) The delayed action of magnesium anodes in primary batteries Part I. Experimental studies. J Power Sources 10:219–241

    Article  CAS  Google Scholar 

  20. Sathyanarayana S, Kumar BVR (1983) The delayed action of magnesium anodes in primary batteries: Part II. Theoretical studies. J Power Sources 10:243–261

    Article  CAS  Google Scholar 

  21. Song G, Atrens A, John DS, Wu X, Nairn J (1997) The anodic dissolution of magnesium in chloride and sulphate solutions. Corros Sci 39:1981–2004

    Article  CAS  Google Scholar 

  22. Anik M, Celikten G (2007) Analysis of the electrochemical reaction behavior of alloy AZ91 by EIS technique in H3PO4/KOH buffered K2SO4 solutions. Corros Sci 49:1878–1894

    Article  CAS  Google Scholar 

  23. Baril G, Blanc C, Pebere N (2001) Impedance spectroscopy in characterizing time-dependent corrosion of AZ91 and AM50 magnesium alloys characterization with respect to their microstructures. J Electrochem Soc 148:489–496

    Article  Google Scholar 

  24. Baril G, Pebere N (2001) The corrosion of pure magnesium in aerated and deaerated sodium sulphate solutions. Corros Sci 43:471–484

    Article  CAS  Google Scholar 

  25. Lv YZ, Liu M, Xu Y, Cao DX, Feng J, Wu RZ, Zhang ML (2013) The electrochemical behaviors of Mg-8Lie-0.5Y and Mg-8Li-1Y alloys in sodium chloride solution. J Power Sources 239:265–268

    Article  CAS  Google Scholar 

  26. Lv YZ, Xu Y, Cao DX (2011) The electrochemical behaviors of Mg, Mg-Li-Al-Ce and Mg-Li-Al-Ce-Y in sodium chloride solution. J Power Sources 196:8809–8814

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the Natural Science Foundation of Heilongjiang Province of China (B201201), the National Natural Science Foundation of China (21203040, 21301038, 51108111), and the Fundamental Research Funds for the Central Universities (HEUCF201403018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-Zhuo Lv.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, YZ., Jin, YZ., Wang, ZB. et al. The electrochemical behaviors of the Mg-7.5Li-3.5Al and Mg-7.5Li-3.5Al-1Y electrodes in sodium chloride solution. Ionics 21, 429–435 (2015). https://doi.org/10.1007/s11581-014-1187-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-014-1187-z

Keywords

Navigation