Skip to main content

Advertisement

Log in

Nickel, cobalt, and manganese oxide composite as an electrode material for electrochemical supercapacitors

  • Short Communication
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A composite material, Ni1/3Co1/3Mn1/3(OH)2, is synthesized by chemical precipitation method for supercapacitors' electrode material. Physical characterizations using x-ray diffraction, energy-dispersive x-ray, and scanning electron microscopy show that Ni1/3Co1/3Mn1/3(OH)2 possesses an amorphous structure and higher specific surface area (268.5 m2 g−1), which lead to a high initial specific capacitance of 1,403 F g−1 in the potential window of 0–1.5 V. It may be a potential electrode material for future supercapacitor when its cycling stability and rate performance are addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Zhang Y, Feng H, Wu X, Wang L, Zhang A, Xia T, Dong H, Li X, Zhang L (2009) Int J Hydrogen Energy 34:4889–4899

    Article  CAS  Google Scholar 

  2. Simon P, Gogotsi Y (2008) Nat Mater 7:845–854

    Article  CAS  Google Scholar 

  3. Frackowiak E, Delpeux S, Jurewicz K, Szostak K, Cazorla-Amoros D, Béguin F (2002) Chem Phys Lett 361:35–41

    Article  CAS  Google Scholar 

  4. Ruiz V, Blanco C, Piñero ER, Khomenko V, Béguin F, Santamaría R (2007) Electrochim Acta 52:4969–4973

    Article  CAS  Google Scholar 

  5. Peng C, Zhang SW, Jewell D (2008) Prog Nat Sci 18:777–788

    Article  CAS  Google Scholar 

  6. Peng C, Jin J, Chen G (2007) Electrochim Acta 53:525–537

    Article  CAS  Google Scholar 

  7. Malinauskas A, Malinauskiene J, Ramanavicius A (2005) Nanotechnol 16:51–62

    Article  Google Scholar 

  8. Cho S, Lee SB (2008) Acc Chem Res 41:699–707

    Article  CAS  Google Scholar 

  9. Belanger D, Brousse T, Long JW (2008) Electrochem Soc Interf 17:49–52

    CAS  Google Scholar 

  10. Ahn YR, Song MY, Jo SM, Park CR (2006) Nanotechnol 17:2865–2869

    Article  CAS  Google Scholar 

  11. Patake VD, Lokhande CD, Joo OS (2009) Appl Surf Sci 255:4192–4196

    Article  CAS  Google Scholar 

  12. Hu CC, Huang YH, Chang KH (2002) J Power Sources 108:117–127

    Article  CAS  Google Scholar 

  13. Jiang J, Kucernak A (2002) Electrochim Acta 27:2381–2386

    Article  Google Scholar 

  14. Nelson PA, Owen JR (2003) J Electrochem Soc 150:1313–1317

    Article  Google Scholar 

  15. Patil UM, Salunkhe RR, Gurav KV, Lokhande CD (2008) Appl Surf Sci 255:2603–2607

    Article  CAS  Google Scholar 

  16. Kandalkar SG, Gunjakar JL, Lokhande CD (2008) Appl Surf Sci 254:5540–5544

    Article  CAS  Google Scholar 

  17. Cao L, Xu F, Liang YY, Li HL (2004) Adv Mater 16:1853–1857

    Article  CAS  Google Scholar 

  18. Wang G, Zhang L, Zhang J (2012) Chem Soc Rev 41:797–828

    Article  CAS  Google Scholar 

  19. Hughes M, Shaffer MSP, Renouf AC, Singh C, Chen GZ, Fray DJ, Windle AH (2002) Adv Mater 14:382–385

    Article  CAS  Google Scholar 

  20. Hughes M, Chen GZ, Shaffer MSP, Fray DJ, Windle AH (2002) Chem Mater 14:1610–1613

    Article  CAS  Google Scholar 

  21. Girish A, Deepali W, Mahesh K, Mulla IS, Vernekar SP, Vijayamohanan K, Rao AM (2003) Chem Phys Lett 376:207–213

    Article  Google Scholar 

  22. Zhang H, Cao G, Wang Z, Yang Y, Shi Z, Gu Z (2008) Electrochem Commun 10:1056–1059

    Article  CAS  Google Scholar 

  23. Wang X, Wang X, Liu L, Yi L, Hu C, Zhang X, Yi W (2011) Synth Met 161:1725–1730

    Article  CAS  Google Scholar 

  24. Lang J, Yan X, Xue Q (2011) J Power Sources 196:7841–7846

    Article  CAS  Google Scholar 

  25. Song Y, Wang J, Li Z, Guan D, Mann T, Liu Q, Zhang M, Liu L (2012) Microporous and Mesoporous Mater 148:159–165

    Article  CAS  Google Scholar 

  26. Yuan C, Hou L, Li D, Shen L, Zhang F, Zhang X (2011) Electrochim Acta 56:6683–6687

    Article  CAS  Google Scholar 

  27. Prasad KR, Miur N (2004) Electrochem Commun 6:1004–1008

    Article  Google Scholar 

  28. Gupta V, Gupta S, Miura N (2008) J Power Sources 175:680–685

    Article  CAS  Google Scholar 

  29. Zhao T, Jiang H, Ma J (2011) J Power Sources 196:860–864

    Article  CAS  Google Scholar 

  30. Zhao DD, Bao SS, Zhou WJ, Li HL (2007) Electrochem Commun 9:869–874

    Article  CAS  Google Scholar 

  31. Wang Y, Yang W, Zhang S, Evans DG, Duan X (2005) J Electrochem Soc 152:A2130–A2137

    Article  Google Scholar 

  32. Park JH, Park OO, Shin KH, Jin CS, Kim JH (2002) Electrochem Solid State Lett 5:H7–H10

    Article  CAS  Google Scholar 

  33. Liang YY, Bao SJ, Li HL (2007) J Solid State Electrochem 11:571–576

    Article  CAS  Google Scholar 

  34. Hu CC, Cheng CY (2002) Electrochem Solid State Lett 5:A43–A46

    Article  CAS  Google Scholar 

  35. Liu XM, Zhang YH, Zhang XG, Fu SY (2004) Electrochem Acta 49:3137–3141

    Article  CAS  Google Scholar 

  36. Kong LB, Lang JW, Liu M, Luo YC, Kang L (2009) J Power Sources 194:1194–1201

    Article  CAS  Google Scholar 

  37. Patil UM, Gurav KV, Fulari VJ, Lokhande CD, Joo OS (2009) J Power Sources 188:338–342

    Article  CAS  Google Scholar 

  38. Li H, Liu S, Huang C, Zhou Z, Li Y, Fang D (2011) Electrochim Acta 58:89–94

    Article  CAS  Google Scholar 

  39. Gupta V, Kusahara T, Toyama H, Gupta S, Miura N (2007) Electrochem Commun 9:2315–2319

    Article  CAS  Google Scholar 

  40. Ahn HJ, Kim WB, Seong TY (2008) Electrochem Commun 10:1284–1287

    Article  CAS  Google Scholar 

  41. Nayak PK, Munichandraiah N (2008) J Electrochem Soc 155:A855–A861

    Article  CAS  Google Scholar 

  42. Zhou WJ, Zhang J, Xue T, Zhao DD, Li HL (2008) J Mater Chem 18:905–910

    Article  CAS  Google Scholar 

  43. Gupta V, Gupta S, Miura N (2008) J Power Sources 177:685–689

    Article  CAS  Google Scholar 

  44. Hu ZA, Xie YL, Wang YX, Wu HY, Yang YY, Zhang ZY (2009) Electrochim Acta 54:2737–2741

    Article  CAS  Google Scholar 

  45. Liu XM, Zhang YH, Zhang XG, Fu SY (2004) Electrochim Acta 49:3137–3141

    Article  CAS  Google Scholar 

  46. Gupta V, Gupt S, Miura N (2009) J Power Sources 189:1292–1295

    Article  CAS  Google Scholar 

  47. Wu CM, Fan CY, Sun IW, Tsai WT, Chang JK (2011) J Power Sources 196:7828–7834

    Article  CAS  Google Scholar 

  48. Wang G, Zhang L, Kim J, Zhang J (2012) J Power Sources 217:554–561

    Article  CAS  Google Scholar 

  49. Subramanian V, Zhu H, Vajtai R, Ajayan PM, Wei B (2005) J Phys Chem B 109:20207–20214

    Article  CAS  Google Scholar 

  50. Soboleva T, Zhao X, Malek K, Xie Z, Navessin T, Holdcroft S (2010) Applied Materials Interfaces 2:375–384

    Article  CAS  Google Scholar 

  51. Taguchi A, Inoue S, Akamaru S, Hara M, Watanabe K, Abe T (2006) J Alloys Compd 414:137–141

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the China Scholarship Council for the financial support for Prof. Guoping Wang's visiting research at the National Research Council of the Canada Institute for Fuel Cell Innovation (NRC-IFCI). Also, great thanks for the financial support from NRC-IFCI, University of South China 2012XQD45, and Robert Piacentini for his help with English and scientific concept translation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoping Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, G., Liu, L., Zhang, L. et al. Nickel, cobalt, and manganese oxide composite as an electrode material for electrochemical supercapacitors. Ionics 19, 689–695 (2013). https://doi.org/10.1007/s11581-013-0872-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-013-0872-7

Keywords

Navigation