Skip to main content
Log in

Influence of dispersed alumina particles on the transport characteristics of mechanochemically synthesized NaSn2F5

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The composite solid electrolytes, NaSn2F5, dispersed with submicron size Al2O3 fillers of various concentrations and particle sizes have been synthesized through mechanochemical milling technique. X-ray diffraction and microstructure results indicate the biphasic nature of the composite materials. The transport properties of the present composite materials have been investigated by means of impedance spectroscopy, and the results show that the improvement in conductivity increases with decrease in the particle size of the filler. An enhancement in conductivity of two orders in magnitude is obtained for NaSn2F5 with Al2O3 dopant concentration of 10 mol%. The activation energy responsible for conductivity relaxation, calculated from the modulus spectra, is found to be almost the same as the value obtained from temperature variation of dc conductivity. The scaling result of the imaginary part of the modulus shows the temperature-independent relaxation behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Fergus JW (1997) The application of solid fluoride electrolytes in chemical sensors. Sensor Actuat B 42:119–130

    Article  Google Scholar 

  2. Sorokin NI, Sobolev BP (2007) Nonstoichiometric fluorides-solid electrolytes for electrochemical devices: a review. Crystallogr Rep 52:842–863

    Article  CAS  Google Scholar 

  3. Sorokin NI (2004) SnF2-based solid electrolytes. Inorg Mater 40:989–997

    Article  CAS  Google Scholar 

  4. Battut JP, Dupuis J, Soudani S, Granier W, Vilminot S, Wahbi H (1987) NMR and electrical conduction study of fluorine motion in MSn2F5 compounds with M = Na, K, Rb, Cs, Tl, NH4. Solid State Ionics 22:247–252

    Article  CAS  Google Scholar 

  5. McDonald RR, Larson AC, Cromer DT (1964) The crystal structure of sodium pentafluorodistannate(II), NaSn2F5. Acta Cryst 17:1104–1108

    Article  CAS  Google Scholar 

  6. Patro LN, Hariharan K (2009) Frequency dependent conduction characteristics of mechanochemically synthesized NaSn2F5. Mater Sci Eng B 162:173–178

    Article  CAS  Google Scholar 

  7. Uvarov NF, Isupov VP, Sharma V, Shukla AK (1992) Effect of morphology and particle size on the ionic conductivities of composite solid electrolytes. Solid State Ionics 51:41–52

    Article  CAS  Google Scholar 

  8. Gopalan P, Bhandari S, Kulkarni AR, Palkar VR (2002) Effect of preparative parameters on the electrical conductivity of Li2SO4-Al2O3 composites. Mater Res Bull 37:2043–2053

    Article  CAS  Google Scholar 

  9. Anantha PS, Hariharan K (2003) Enhanced ionic conduction in NaNO3 by dispersed oxide inclusions. J Phys Chem Solids 64:1131–1137

    Article  CAS  Google Scholar 

  10. Jow T, Wagner JB (1979) The effect of dispersed alumina particles on the electrical conductivity of cuprous chloride. J Electrochem Soc 126:1963–1972

    Article  CAS  Google Scholar 

  11. Maier J (1995) Ionic conduction in space charge regions. Prog Solid St Chem 23:171–263

    Article  CAS  Google Scholar 

  12. Uvarov NF (2011) Composite solid electrolytes: recent advances and design strategies. J Solid State Electrochem 15:367–389

    Article  CAS  Google Scholar 

  13. Kuznetsov SV, Osiko VV, Tkatchenko EA, Fedorov PP (2006) Inorganic nanofluorides and related nanocomposites. Russ Chem Rev 75:1065–1082

    Article  CAS  Google Scholar 

  14. Barik SK, Choudhary RNP, Mahapatra PK (2008) Electrical properties of Na1/2 Nd1/2 TiO3 ceramics. J Mater Sci 19:607–614

    CAS  Google Scholar 

  15. Almond DP, West AR (1983) Impedance and modulus spectroscopy of “real” dispersive conductors. Solid State Ionics 11:57–64

    Article  CAS  Google Scholar 

  16. Hodge IM, Ngai KL, Moynihan CT (2005) Comments on the electric modulus function. J Non-Cryst Solids 351:104–115

    Article  CAS  Google Scholar 

  17. Macdonald JR (2009) Comments on the electric modulus formalism model and superior alternatives to it for the analysis of the frequency response of ionic conductors. J Phys Chem Solids 70:546–554

    Article  CAS  Google Scholar 

  18. Hariharan K, Maier J (1995) Enhancement of the fluoride vacancy conduction in PbF2:SiO2 and PbF2:Al2O3 composites. J Electrochem Soc 142:3469–3473

    Article  CAS  Google Scholar 

  19. Gerhardt R (1994) Impedance and dielectric spectroscopy revisited: distinguishing localized relaxation from long-range conductivity. J Phys Chem Solids 55:1491–1506

    Article  CAS  Google Scholar 

  20. Suthanthiraraj SA, Premchand YD (2003) Frequency response analysis of ionically conducting mixed system (1-x)CuI-xAg2MoO4 (0.15 ≤ x ≤ 0.55). Ionics 9:301–307

    Article  CAS  Google Scholar 

  21. Subban RHY, Arof AK (2003) Impedance spectroscopic studies on a binary salt poly (vinyl chloride) based electrolyte. Ionics 9:375–381

    Article  CAS  Google Scholar 

  22. Bergman R (2000) General susceptibility functions for relaxations in disordered systems. J Appl Phys 88:1356–1365

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. N. Patro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patro, L.N., Hariharan, K. Influence of dispersed alumina particles on the transport characteristics of mechanochemically synthesized NaSn2F5 . Ionics 19, 643–649 (2013). https://doi.org/10.1007/s11581-012-0784-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-012-0784-y

Keywords

Navigation