Skip to main content
Log in

The influence of potassium concentration on epileptic seizures in a coupled neuronal model in the hippocampus

  • Research Article
  • Published:
Cognitive Neurodynamics Aims and scope Submit manuscript

Abstract

Experiments on hippocampal slices have recorded that a novel pattern of epileptic seizures with alternating excitatory and inhibitory activities in the CA1 region can be induced by an elevated potassium ion (K+) concentration in the extracellular space between neurons and astrocytes (ECS-NA). To explore the intrinsic effects of the factors (such as glial K+ uptake, Na+–K+-ATPase, the K+ concentration of the bath solution, and K+ lateral diffusion) influencing K+ concentration in the ECS-NA on the epileptic seizures recorded in previous experiments, we present a coupled model composed of excitatory and inhibitory neurons and glia in the CA1 region. Bifurcation diagrams showing the glial K+ uptake strength with either the Na+–K+-ATPase pump strength or the bath solution K+ concentration are obtained for neural epileptic seizures. The K+ lateral diffusion leads to epileptic seizure in neurons only when the synaptic conductance values of the excitatory and inhibitory neurons are within an appropriate range. Finally, we propose an energy factor to measure the metabolic demand during neuron firing, and the results show that different energy demands for the normal discharges and the pathological epileptic seizures of the coupled neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bahar S, Suh M, Zhao M et al (2006) Intrinsic optical signal imaging of neocortical seizures: the ‘epileptic dip’. NeuroReport 17(5):499–503

    Article  PubMed  Google Scholar 

  • Bazhenov M et al (2004) Potassium model for slow (2–3 Hz) in vivo neocortical paroxysmal oscillations. J Neurophysiol 92(2):1116–1132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cornog JL, Gonatas NK, Feierman JR (1967) Effects of intracerebral injection of ouabain on the fine structure of rat cerebral cortex. Am J Pathol 51(4):573–590

    Google Scholar 

  • Cressman JR, Ullah G, Ziburkus J et al (2009) The influence of sodium and potassium dynamics on excitability, seizures, and the stability of persistent states: I. Single neuron dynamics. J Comput Neurosci 26(2):159–170

    Article  PubMed  PubMed Central  Google Scholar 

  • Durand DM, Jensen AL (2010) Potassium diffusive coupling in neural networks. Philos Trans R Soc Lond 365(1551):2347–2362

    Article  Google Scholar 

  • Ermentrout BG, Terman D (2010) Foundations of mathematical neuroscience. Springer, New York, pp 157–167

    Google Scholar 

  • Fröhlich F, Timofeev I, Sejnowski TJ, Bazhenov M (2008) 26—Extracellular potassium dynamics and epileptogenesis. In: Soltesz I, Staley K (eds) Computational Neuroscience in Epilepsy, Academic press, New York, pp 419–439

  • Gluckman BJ, Nguyen H, Schiff SJ (2001) Adaptive electric field control of epileptic seizures. J Neurosci 21(2): 590–600

  • Graham BP, Saudargiene A, Cobb S (2012) A computational study of the influence of synaptic cooperativity on synaptic plasticity in a hippocampal CA1 pyramidal cell. BMC Neurosci 13(Suppl 1):P164

    Article  PubMed Central  Google Scholar 

  • Ingram JM, Zhang C, Xu J et al (2013) FRET excited ratiometric oxygen sensing in living tissue. J Neurosci Methods 214(1):45–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen MS, Yaari Y (1997) Role of intrinsic burst firing, potassium accumulation, and electrical coupling in the elevated potassium model of hippocampal epilepsy. J Neurophysiol 77(3):1224–1233

    CAS  PubMed  Google Scholar 

  • Kager H, Wadman WJ, Somjen GG (2000) Simulated seizures and spreading depression in a neuron model incorporating interstitial space and ion concentrations. J Neurophysiol 84(1):495–512

    CAS  PubMed  Google Scholar 

  • Kager H, Wadman WJ, Somjen G (2007) Seizure-like after discharges simulated in a model neuron. J Comput Neurosci 22(2):105–128 (24)

    Article  CAS  PubMed  Google Scholar 

  • Larsen BR, Assentoft M, Cotrina ML et al (2014) Contributions of the Na+/K+-ATPase, NKCC1, and Kir4.1 to hippocampal K? Clearance and volume responses. Glia 62(4):608–622

    Article  PubMed  PubMed Central  Google Scholar 

  • Marom M et al (2003) Depolarization block of neurons during maintenance of electrographic seizures. J Neurophysiol 90(4):2402–2408

    Article  Google Scholar 

  • Moujahid A, D’Anjou A, Torrealdea FJ et al (2012) Energy and information in Hodgkin–Huxley neurons. Phys Rev E 83(3):681–689

    Google Scholar 

  • Ohno Y, Tokudome K, Kunisawa N et al (2015) Role of astroglial Kir4.1 channels in the pathogenesis and treatment of epilepsy. Ther Targets Neurol Dis 2:1–10

    Google Scholar 

  • Østby I, Øyehaug L, Einevoll GT, Nagelhus EA, Plahte E, Zeuthen T, Lloyd CM, Ottersen OP, Omholt SW (2009) Astrocytic mechanisms explaining neural-activity-induced shrinkage of extraneuronal space. PLoS Comput Biol 5(1):291–298

    Article  Google Scholar 

  • Øyehaug L, Østby I, Lloyd CM et al (2012) Dependence of spontaneous neuronal firing and depolarisation block on astroglial membrane transport mechanisms. J Comput Neurosci 32(1):147–165

  • Park EH, Durand DM (2006) Role of potassium lateral diffusion in non-synaptic epilepsy: a computational study. J Theor Biol 238(3):666–682

    Article  CAS  PubMed  Google Scholar 

  • Pinsky PF, Rinzel J, Pinsky PF et al (1994) Intrinsic and network rhythmogenesis in a reduced Traub model for CA3 hippocampal neurons. J Comput Neurosci 1(1–2):39–60

    Article  CAS  PubMed  Google Scholar 

  • Prinz AA (2008) Understanding epilepsy through network modeling. Proc Natl Acad Sci USA 105(16):5953–5954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Traynelis SF, Dingledine R (1988a) Potassium-induced spontaneous electrographic seizures in the rat hippocampal slice. J Neurophysiol 59(1):259–276

    CAS  PubMed  Google Scholar 

  • Ullah G, Schiff SJ (2010) Assimilating seizure dynamics. PLoS Comput Biol 6(5):e1000776–e1000776

    Article  PubMed  PubMed Central  Google Scholar 

  • Ullah G, Cressman JR Jr, Barreto E et al (2009) The influence of sodium and potassium dynamics on excitability, seizures, and the stability of persistent states: II. Network and glial dynamics. J Comput Neurosci 26(2):171–183

    Article  PubMed  Google Scholar 

  • Wendling F, Bartolomei F, Mina F et al (2012) Interictal spikes, fast ripples and seizures in partial epilepsies—combining multi-level computational models with experimental data. Eur J Neurosci 36(2):2164–2177

    Article  PubMed  Google Scholar 

  • Yaari Y, Konnerth A, Heinemann U (1986) Nonsynaptic epileptogenesis in the mammalian hippocampus in vitro. II. Role of extracellular potassium. J Neurophysiol 56(2):424–438

  • Yina W, Ghanim U, Justin I et al (2014a) Oxygen and seizure dynamics: II. Computational modeling. J Neurophysiol 112(2):213–223

    Article  Google Scholar 

  • Yina W, Ghanim U, Schiff SJ (2014b) Unification of neuronal spikes, seizures, and spreading depression. J Neurosci 34(35):11733–11743

    Article  Google Scholar 

  • Ziburkus J et al (2006) Interneuron and pyramidal cell interplay during in vitro seizure-like events. J Neurophysiol 95(6):3948–3954

    Article  PubMed  PubMed Central  Google Scholar 

  • Žiburkus J, Cressman JR, Schiff SJ (2013) Seizures as imbalanced up states: excitatory and inhibitory conductances during seizure-like events. J Neurophysiol 109(5):1296–1306

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China under Grant Nos. 11272242 and 11472202 and Natural Science Foundation of Shaanxi Province of China (No. S2014JC12575).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, M., Li, J., Wang, R. et al. The influence of potassium concentration on epileptic seizures in a coupled neuronal model in the hippocampus. Cogn Neurodyn 10, 405–414 (2016). https://doi.org/10.1007/s11571-016-9390-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11571-016-9390-4

Keywords

Navigation