Skip to main content
Log in

Multiscale nonlocal flow in a fractured porous medium

  • Published:
ANNALI DELL'UNIVERSITA' DI FERRARA Aims and scope Submit manuscript

Abstract

We study the flow generated by an incompressible viscoelastic fluid in a fractured porous medium. The model consists of a fluid flow governed by Stokes–Volterra equations evolving in a periodic double-porosity medium. Using the multiscale convergence method associated to some recent tools about the convergence of convolution sequences, we show that the equivalent macroscopic model is of the same type as the microscopic one, but in a fixed domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Agranovich, Y., Sobolevskii, P.: Investigation of viscoelastic fluid mathematical model. RAC. Ukranian SSR. Ser. A 10, 71–74 (1989)

    Google Scholar 

  2. Allaire, G., Briane, M.: Multiscale convergence and reiterated homogenization. Proc. R. Soc. Edingurgh Sect. A 126, 297–342 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  3. Arbogast, T., Douglas Jr, J., Hornung, H.: Derivation of the double porosity model of single phase flow via homogenization theory. SIAM J. Math. Anal. 21, 823–836 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  4. Barenblatt, G.I., Zheltov, I.P., Kochina, I.N.: Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks (strata). J. Appl. Math. Mech. 24, 1286–1303 (1960)

    Article  MATH  Google Scholar 

  5. Cioranescu, D., Paulin, J.S.J.: Homogenization of Reticulated Structures. Springer, New York (1999)

    Book  MATH  Google Scholar 

  6. Coats, K.H., Smith, B.D.: Dead-end pore volume and dipersion in porous media. Trans. Soc. Pet. Eng. 231, 73–84 (1964)

    Article  Google Scholar 

  7. Douanla, H., Woukeng, J.L.: Almost periodic homogenization of a generalized Ladyzhenskaya model for incompresible viscous flow. J. Math. Sci. (N.Y.) 189, 431–458 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  8. Douanla, H., Nguetseng, G., Woukeng, J.L.: Incompressible viscous Newtonian flow in a fissured medium of general deterministic type. J. Math. Sci. (N.Y.) 191, 214–242 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  9. Holmbom, A.: Homogenization of parabolic equations: an alternative approach and some corrector-type results. Appl. Math. 42, 321–343 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  10. Holmbom, A., Svanstedt, N., Wellander, N.: Multiscale convergence and reiterated homogenization of parabolic problems. Appl. Math. 50, 131–151 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Huyakorn, P.S., Pinder, G.F.: Computational Methods in Subsurface Flow. Academic Press, New York (1983)

    MATH  Google Scholar 

  12. Joseph, D.D.: Fluid Dynamics of Viscoelastic Liquids. Springer, New York (1990)

    Book  MATH  Google Scholar 

  13. Kazemi, H.: Pressure transient analysis of naturally fractured reservoirs with uniform fracture distribution. Soc. Pet. Eng. J. 9, 451–462 (1969)

    Article  Google Scholar 

  14. Lieb, E.H., Seiringer, R., Yngvason, J.: Poincaré inequalities in punctured domains. Ann. Math. 158, 1067–1080 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. Lions, J.-L., Lukkassen, D., Persson, L.E., Wall, P.: Reiterated homogenization of monotone operators. C. R. Acad. Sci. Paris S ér. I Math. 330, 675–680 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  16. Lions, J.-L., Lukkassen, D., Persson, L.E., Wall, P.: Reiterated homogenization of nonlinear monotone operators. Chin. Ann. Math. Ser. B 22, 1–12 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  17. Lukkassen, D., Nguetseng, G., Wall, P.: Two-scale convergence. Int. J. Pure Appl. Math. 2, 35–86 (2002)

    MATH  MathSciNet  Google Scholar 

  18. Meirmanov, A.: Double porosity models for liquid filtration in incompressible poroelastic media. Math. Models Meth. Appl. Sci. 20, 635–659 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  19. Nguetseng, G.: Homogenization structures and applications I. Z. Anal. Anwen. 22, 73–107 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  20. Nguetseng, G.: Homogenization in perforated domains beyond the periodic setting. J. Math. Anal. Appl. 289, 608–628 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  21. Nguetseng, G., Sango, M., Woukeng, J.L.: Reiterated ergodic algebras and applications. Commun. Math. Phys. 300, 835–876 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  22. Nguetseng, G., Showalter, R.E., Woukeng, J.L.: Diffusion of a single-phase fluid through a general deterministic partially-fissured medium. Electron. J. Differ. Equ. 2014(164), 1–26 (2014)

    MathSciNet  Google Scholar 

  23. Odeh, A.S.: Unsteady-state behavior of naturally fractured reservoirs. Soc. Pet. Eng. J. 5, 60–66 (1965)

    Article  Google Scholar 

  24. Oldroyd, J.G.: Non-Newtonian flow of liquids and solids. In: Eirich, F.R. (ed.) Rheology: Theory and Applications, vol. I, pp. 653–682. AP, New York (1956)

    Chapter  Google Scholar 

  25. Orlik, J.: Existence and stability estimate for the solution of the ageing hereditary linear viscoelasticity problem. Abstr. Appl. Anal. 2009, 1–19 (2009)

    Article  MathSciNet  Google Scholar 

  26. Oskolkov, A.P.: Initial boundary value problems for the equations of motion of Kelvin-Voigt fluids and Oldroyd fluids. Proc. Steklov Inst. Math. 2, 137–182 (1989)

    Google Scholar 

  27. Oskolkov, A.P., Akhmatov, M.M., Cotsiolis, A.A.: Equations of the motion of linear viscoelastic fluids and the equations of the filtration of fluids with delay. J. Sov. Math. 49, 1203–1206 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  28. Paes-leme, P.J., Douglas, J., Kischinhevsky, M., Spagnuolo, A.M.: A multiple-porosity model for a single-phase flow through naturally fractured porous media. Comput. Appl. Math. 1, 19–48 (1998)

    MathSciNet  Google Scholar 

  29. Panfilov, M., Rasoulzadeh, M.: Appearance of the nonlinearity from the nonlocality in diffusion through multiscale fractured porous media. Comput. Geosci. 17, 269–286 (2013)

    Article  MathSciNet  Google Scholar 

  30. Peszyńska, M., Showalter, R.E.: Multiscale elliptic-parabolic systems for flow and transport. Electron. J. Differ. Equ. 2007(147), 1–30 (2007)

    Google Scholar 

  31. Peszyńska, M., Showalter, R.E., Yi, S.-Y.: Homogenization of a pseudoparabolic system. Appl. Anal. 88, 1265–1282 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  32. Sango, M., Woukeng, J.L.: Stochastic \(\Sigma \)-convergence and applications. Dyn. PDE 8, 261–310 (2011)

    MATH  MathSciNet  Google Scholar 

  33. Shi, P., Spagnuolo, A.M., Wright, S.: Reiterated homogenization and the double-porosity model. Transp. Porous Media 59, 73–95 (2005)

    Article  MathSciNet  Google Scholar 

  34. Showalter, R.E., Visarraga, D.B.: Double-diffusion models from a highly-heterogeneous medium. J. Math. Anal. Appl. 295, 191–201 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  35. Sobolevskii, P.: Stabilization of viscoelastic fluid motion (Oldroyd’s mathematical model). Differ. Integral Equ. 7, 1579–1621 (1994)

    MathSciNet  Google Scholar 

  36. Spagnuolo, A.M., Wright, S.: Derivation of a multiple-porosity model of single-phase flow through a fractured porous medium via recursive homogenization. Asymptot. Anal. 39, 91–112 (2004)

    MATH  MathSciNet  Google Scholar 

  37. Temam, R.: Navier-Stokes Equations: Theory and Numerical Analysis. North-Holland, Amsterdam (1984)

    MATH  Google Scholar 

  38. Visintin, A.: Towards a two-scale calculus. ESAIM: Cont. Optim. Calc. Var. 12, 371–397 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  39. Warren, J.E., Root, P.J.: The behavior of naturally fractured reservoirs. Soc. Pet. Eng. J. 3, 245–255 (1963)

    Article  Google Scholar 

  40. Woukeng, J.L.: Linearized viscoelastic Oldroyd fluid motion in almost periodic environment. Math. Meth. Appl. Sci., online in Wiley Online. Library (2013). doi:10.1002/mma.3026

  41. Woukeng, J.L.: Homogenization of nonlinear degenerate non-monotone elliptic operators in domains perforated with tiny holes. Acta Appl. Math. 112, 35–68 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  42. Woukeng, J.L.: Reiterated homogenization of nonlinear pseudo monotone degenerate parabolic operators. Commun. Math. Anal. 9, 98–129 (2010)

    MATH  MathSciNet  Google Scholar 

  43. Woukeng, J.L.: \(\Sigma \)-convergence and reiterated homogenization of nonlinear parabolic operators. Commun. Pure Appl. Anal. 9, 1753–1789 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  44. Woukeng, J.L.: Introverted algebras with mean value and applications. Nonlin. Anal. 99, 190–215 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  45. Yeh, L.M.: On two-phase flow in fractured media. Math. Models Methods Appl. Sci. 12, 1075–1107 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  46. Yi, S.-Y., Peszyńska, M., Showalter, R.E.: Numerical upscaled model of transport with non-separable scale. XVIII Intern. Conf. on Water Resources CMWR 2010, J. Carrera (Ed), CIMNE, Barcelona, pp. 1–8 (2010)

Download references

Acknowledgments

The author thanks the referees for their careful reading of the manuscript and insightful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Louis Woukeng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Woukeng, J.L. Multiscale nonlocal flow in a fractured porous medium. Ann Univ Ferrara 61, 173–200 (2015). https://doi.org/10.1007/s11565-014-0218-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11565-014-0218-z

Keywords

Mathematics Subject Classification

Navigation