Skip to main content

Advertisement

Log in

Species diversity of myxomycetes associated with different terrestrial ecosystems, substrata (microhabitats) and environmental factors

  • Review
  • Published:
Mycological Progress Aims and scope Submit manuscript

Abstract

Myxomycetes (plasmodial slime molds or myxogastria) are a group of amoeboid protists occurring throughout the world; they have the highest diversity documented in terrestrial ecosystems. Myxomycete spores are dispersed by wind and animals, enabling spores to reach a suitable habitat for germination. Although myxomycetes have been recorded in every terrestrial ecosystem (e.g., tropical, temperate and boreal forests; forest tundra; deserts; alpine snowbanks), these organisms are not equally abundant in all forest types. Within forests, myxomycete species inhabit many different substrata (microhabitats), including bark, litter, dung, inflorescences, soil, fungi, and even the integument of animals. Moreover, many environmental factors (e.g., temperature, moisture, substratum pH, the water-holding capacity of the substratum, and the epiphytes of the substratum) interact to influence the occurrence and distribution of myxomycetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adamonyte G (2003) Trichia papillata, a new coprophilous myxomycete species. Mycotaxon 87:379–384

    Google Scholar 

  • Alexopoulos CJ, Mims CW, Blackwell M (1996) Introductory Mycology, 4th edn. John Wiley and Sons, New York

    Google Scholar 

  • Balke M, Ribera I, Vogler AP (2004) MtDNA phylogeny and biogeography of Copelatinae, a highly diverse group of tropical diving beetles (Dytiscidae). Mol Phylogenet Evol 32:866–880

    CAS  PubMed  Google Scholar 

  • Beltrán-Tejera E, Mosquera J, Lado C (2010) Myxomycete diversity from arid and semiarid zones of the Canary Islands (Spain). Mycotaxon 113:439–442

    Google Scholar 

  • Cavalier-Smith T (2013) Early evolution of eukaryote feeding modes, cell structural diversity, and classification of the protozoan phyla Loukozoa, Sulcozoa, and Choanozoa. Eur J Protistol 49:115–178

    PubMed  Google Scholar 

  • Coelho IL, Stephenson SL (2012) Myxomycetes associated with pipevine, a temperate liana. Mycosphere 3:245–249

    Google Scholar 

  • Costa AAA, Bezerra ACC, Lima VX, Cavalcanti LH (2014) Diversity of myxomycetes in an environmentally protected area of Atlantic Forest in northeastern Brazil. Acta Bot Bras 28:445–455

    Google Scholar 

  • Dudka IO, Romanenko KO (2006) Co-existence and interaction between myxomycetes and other organisms in shared niches. Acta Mycol 41:99–112

    Google Scholar 

  • Dundka IO, Kryvomaz TI (2013) Myxomycetes in the virgin beech and old-aged spruce forests of National Nature Park “Bewitched Land” (Ukrainian Carpathians). Stud Biol 7:107–118

    Google Scholar 

  • Dykova I, Lom J, Dvorakova H, Peckova H, Fiala I (2007) Didymium-like myxogastrids (class Mycetozoa) as endocommensals of sea urchins (Sphaerechinus granularis). Folia Parasitol 54:1–12

    CAS  PubMed  Google Scholar 

  • Eliasson UH (2013) Coprophilous myxomycetes: recent advances and future research directions. Fungal Divers 59:1–6

    Google Scholar 

  • Eliasson UH, Keller HW, Schoknecht JD (1991) Kelleromyxa, a new generic name for Licea fimicola (Myxomycetes). Mycol Res 95:1201–1207

    Google Scholar 

  • Erastova DA, Okun MV, Fiore-Donno AM, Novozhilov YK, Schnittler M (2013) Phylogenetic position of the enigmatic myxomycete genus Kelleromyxa revealed by SSU rDNA sequences. Mycol Prog 21:599–608

    Google Scholar 

  • Everhart SE, Keller HW (2008) Life history strategies of corticolous myxomycetes: the life cycle, plasmodial types, fruiting bodies, and taxonomic orders. Fungal Divers 29:1–16

    Google Scholar 

  • Everhart SE, Ely JS, Keller HW (2009) Evaluation of tree canopy epiphytes and bark characteristics associated with the presence of corticolous myxomycetes. Botany 87:509–517

    Google Scholar 

  • Feest A, Madelin M (1985) A method for the enumeration of myxomycetes in soils and its application to a wide range of soils. FEMS Microbiol Lett 31:103–109

    Google Scholar 

  • Feest A, Madelin M (1988) Seasonal population changes of myxomycetes and associated organisms in five non-woodland soils, and correlations between their numbers and soil characteristics. FEMS Microbiol Lett 53:141–152

    Google Scholar 

  • Fiore-Donno AM, Nikolaev SI, Nelson M, Pawlowski J, Cavalier-Smith T, Baldauf SL (2010) Deep phylogeny and evolution of slime moulds (Mycetozoa). Protist 161:55–70

    CAS  PubMed  Google Scholar 

  • Fiore-Donno AM, Novozhilov YK, Meyer M, Schnittler M (2011) Genetic structure of two protists (Myxogastria, Amoebozoa) suggests asexual reproduction in sexual Amoebae. PLoS ONE 6:e22872

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fiore-Donno AM, Clissmann F, Meyer M, Schnittler M, Cavalier-Smith T (2013) Two-gene phylogeny of bright-spored myxomycetes (slime moulds, superorder Lucisporidia). PLoS ONE 8:e62586

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gilbert HC, Martin GW (1933) Myxomycetes found on the bark of living trees. University of Iowa Press, Iowa City

    Google Scholar 

  • Härkönen M (1977) Corticolous myxomycetes in three different habitats in southern Finland. Karstenia 17:19–32

    Google Scholar 

  • Härkönen M, Rikkinen J, Ukkola T, Enroth J, Virtanen V, Jääskeläinen K, Rinne E, Hiltunen L, Piippo S, He X (2004) Corticolous myxomycetes and other epiphytic cryptogams on seven native tree species in Hunan Province, China. Syst Geogr Plants 74:189–198

    Google Scholar 

  • Ing B (1994) Tansley review no. 62 the phytosociology of myxomycetes. New Phytol 126:175–201

    Google Scholar 

  • Ing B (1998) Alpine myxomycetes in Scotland. Bot J Soc 50:47–53

    Google Scholar 

  • Ing B (1999) The myxomycetes of Britain and Ireland: an identification handbook. The Richmond Publishing Company, Slough

    Google Scholar 

  • Ing B, Smith RIL (1983) Further myxomycete records from South Georgia and the Antarctic Peninsula. Br Antarct Surv Bull 59:80–81

    Google Scholar 

  • Ing B, Spooner B, Butterfill G (1999) Myxomycetes from the Azores. Kew Bull 54:405–413

    Google Scholar 

  • Kamono A, Fukui M (2006) Rapid PCR-based method for detection and differentiation of Didymiaceae and Physaraceae (myxomycetes) in environmental samples. J Microbiol Methods 67:496–506

    CAS  PubMed  Google Scholar 

  • Kamono A, Meyer M, Cavalier-Smith T, Fukui M, Fiore-Donno AM (2012) Exploring slime mould diversity in high-altitude forests and grasslands by environmental RNA analysis. FEMS Microbiol Ecol 84:98–109

    PubMed  Google Scholar 

  • Kappel T, Anken R (1992) An aqauarium myxomycete: Didymium nigripes. Mycologist 6:106–107

    Google Scholar 

  • Kazunari T (2010) Succession in myxomycete communities on dead Pinus densiflora wood in a secondary forest in southwestern Japan. Ecol Res 25:995–1006

    Google Scholar 

  • Keller HW, Braun KL (1999) Myxomycetes of Ohio: their systematics, biology, and use in teaching. Ohio Biological Survey, Columbus

    Google Scholar 

  • Keller HW, Brooks TE (1973) Corticolous myxomycetes I: two new species of Didymium. Mycologia 62:286–294

    Google Scholar 

  • Keller HW, Brooks TE (1977) Corticolous myxomycetes VII: contribution toward a monograph of Licea, five new species. Mycologia 69:667–684

    Google Scholar 

  • Keller HW, Skrabal M, Eliasson UH, Gaither TW (2004) Tree canopy biodiversity in the Great Smoky Mountains National Park: ecological and developmental observations of a new myxomycete species of Diachea. Mycologia 96:537–547

    PubMed  Google Scholar 

  • Kilgore CM, Keller HW, Ely JS (2009) Aerial reproductive structures of vascular plants as a microhabitat for myxomycetes. Mycologia 101:305–319

    PubMed  Google Scholar 

  • Ko Ko TW, Stephenson SL, Jeewon R, Lumyong S, Hyde KD (2009) Molecular diversity of myxomycetes associated with decaying wood and forest floor leaf litter. Mycologia 101:592–598

    Google Scholar 

  • Ko Ko TW, Stephenson SL, Hyde KD, Rojas C, Lumyong S (2010) Patterns of occurrence of myxomycetes on lianas. Fungal Ecol 3:302–310

    Google Scholar 

  • Kosheleva AP, Novozhilov YK, Schnittler M (2008) Myxomycete diversity of the state reserve “Stolby” (south-eastern Siberia, Russia). Fungal Divers 31:45–62

    Google Scholar 

  • Kowalski DT, Hinchee AA (1972) Barbeyella minutissima: a common alpine myxomycete. Syesis 5:95–97

    Google Scholar 

  • Kylin H, Mitchell DW, Seraoui EH, Buyck B (2013) Myxomycetes from Papua New Guinea and New Caledonia. Fungal Divers 59:33–44

    Google Scholar 

  • Lado C, Estrada-Torres A, Stephenson SL, Wrigley de Basanta D, Schnittler M (2003) Biodiversity assessment of myxomycetes from two tropical forest reserves in Mexico. Fungal Divers 12:67–110

    Google Scholar 

  • Lado C, Mosquera J, Estrada-Torres A, Beltrán-Tejera E, Wrigley de Basanta D (2007) Description and culture of a new succulenticolous Didymium (Myxomycetes). Mycologia 99:602–611

    CAS  PubMed  Google Scholar 

  • Lado C, Wrigley de Basanta D, Estrada-Torres A (2011) Biodiversity of myxomycetes from the Monte Desert of Argentina. An Jardin Bot Madrid 68:61–95

    Google Scholar 

  • Lemos DBN, Agra LANN, Iannuzzi L, Bezerra MFA, Cavalcanti LH (2010) Co-existence of myxomycetes and beetles in an Atlantic Rainforest remnant of Pernambuco, Brazil, with emphasis on staphylinids (Coleoptera: Staphylinidae). J Nat Hist 44:1365–1376

    Google Scholar 

  • Lindblad I (1998) Wood-inhabiting fungi on fallen logs of Norway spruce: relations to forest management and substrate quality. Nord J Bot 18:243–255

    Google Scholar 

  • Lindley LA, Stephenson SL, Spiegel FW (2007) Protostelids and myxomycetes isolated from aquatic habitats. Mycologia 99:504–509

    PubMed  Google Scholar 

  • Liu QS, Yan SZ, Dai JY, Chen SL (2013) Species diversity of corticolous myxomycetes in Tianmu Mountain National Nature Reserve, China. Can J Microbiol 59:803–813

    CAS  PubMed  Google Scholar 

  • Madelin M (1990) Methods for studying the ecology and population dynamics of soil myxomycetes. Method Mirobiol 22:405–416

    Google Scholar 

  • Martin GW, Alexopoulos CJ, Farr ML (1983) The genera of Myxomycetes. University of Iowa Press, Iowa City

    Google Scholar 

  • Mosquera J, Lado C, Estrada-Torres A, Beltrán-Tejera E, Wrigley de Basanta D (2003) Description and culture of a new Myxomycete, Licea succulenticola. An Jardin Bot Madrid 60:3–10

    Google Scholar 

  • Ndiritu GG, Spiegel FW, Stephenson SL (2009) Distribution and ecology of the assemblages of myxomycetes associated with major vegetation types in Big Bend National Park, USA. Fungal Ecol 2:168–183

    Google Scholar 

  • Neubert H, Nowotny W, Baumann K (1993) Die Myxomyceten Deutschlands und des angrenzenden Alpenraumes unter besonderer Berücksichtigung Österreichs, Band 1: Ceratiomyxales, Echinosteliales, Liceales, Trichiales. Karlheinz Baumann Verlag, Gomaringen City

    Google Scholar 

  • Neubert H, Nowotny W, Baumann K, Marx H (1995) Die Myxomyceten Deutschlands und des angrenzenden Alpenraumes unter besonderer Berücksichtigung Österreichs, Band 2: Physarales. Karlheinz Baumann Verlag, Gomaringen City

    Google Scholar 

  • Neubert H, Nowotny W, Baumann K (2000) Die Myxomyceten Deutschlands und des angrenzenden Alpenraumes unter besonderer Berücksichtigung Österreichs, Band 3: Stemonitales. Karlheinz Baumann Verlag, Gomaringen City

    Google Scholar 

  • Nieves-Rivera AM, Stephenson SL, Wrigley de Basanta D (2003) Living and dead lianas as a special microhabitat for myxomycetes in tropical forests. Inoculum 54:38

    Google Scholar 

  • Novozhilov YK, Schnittler M (2008a) Nivicole myxomycetes of the Khibine mountains (Kola peninsula). Nord J Bot 16:549–561

    Google Scholar 

  • Novozhilov YK, Schnittler M (2008b) Myxomycete diversity and ecology in arid regions of the Great Lake Basin of western Mongolia. Fungal Divers 30:97–119

    Google Scholar 

  • Novozhilov YK, Schnittler M, Stephenson SL (1998) Analysis of myxomycete diversity of Russian subarctic and arctic areas. Mikol Fitopatol 32:27–33

    Google Scholar 

  • Novozhilov YK, Schnittler M, Stephenson SL (1999) Myxomycetes of the Taimyr Peninsula (north-central Siberia). Karstenia 39:77–97

    Google Scholar 

  • Novozhilov YK, Schnittler M, Zemlianskaia IV, Fefelov KA (2000) Biodiversity of plasmodial slime moulds (Myxogastria): measurement and interpretation. Protistology 1:161–178

    Google Scholar 

  • Novozhilov YK, Schnittler M, Rollins AW, Stephenson SL (2001) Myxomycetes from different forest types in Puerto Rico. Mycotaxon 77:285–299

    Google Scholar 

  • Novozhilov YK, Mitchell DW, Schnittler M (2003) Myxomycete biodiversity of the Colorado Plateau. Mycol Prog 2:243–258

    Google Scholar 

  • Novozhilov YK, Zemlianskaia IV, Schnittler M, Stephenson SL (2006) Myxomycete diversity and ecology in the arid regions of the Lower Volga River Basin (Russia). Fungal Divers 23:193–241

    Google Scholar 

  • Novozhilov YK, Schnittler M, Erastova DA, Okun MV, Schepin ON, Heinrich E (2013) Diversity of nivicolous myxomycetes of the Teberda State Biosphere Reserve (Northwestern Caucasus, Russia). Fungal Divers 59:109–130

    Google Scholar 

  • Parker H (1946) Studies in the nutrition of some aquatic myxomycetes. J Elisha Mitch Sci Soc 62:231–247

    CAS  Google Scholar 

  • Pawlowski J, Burki F (2009) Untangling the phylogeny of amoeboid protists. J Eukaryot Microbiol 56:16–25

    CAS  PubMed  Google Scholar 

  • Pawlowski J, Audic S, Adl S, Bass D, Belbahri L, Berney C, Bowser SS, Cepicka I, Decelle J, Dunthorn M (2012) CBOL protist working group: barcoding eukaryotic richness beyond the animal, plant, and fungal kingdoms. PLoS Biol 10:e1001419

    PubMed Central  CAS  PubMed  Google Scholar 

  • Powers DM, Stephenson SL (2006) Protostelids from tropical forests, woodlands and deserts in Australia. Mycologia 98:218–222

    PubMed  Google Scholar 

  • Pyle C, Brown MM (1999) Heterogeneity of wood decay classes within hardwood logs. Forest Ecol Manag 114:253–259

    Google Scholar 

  • Renvall P (1995) Community structure and dynamics of wood-rotting Basidiomycetes on decomposing conifer trunks in northern Finland. Karstenia 35:1–51

    Google Scholar 

  • Rojas C, Stephenson SL (2007) Distribution and ecology of myxomycetes in the high-elevation oak forests of Cerro Bellavista, Costa Rica. Mycologia 99:534–543

    PubMed  Google Scholar 

  • Rojas C, Stephenson SL (2008) Myxomycete ecology along an elevation gradient on Cocos Island, Costa Rica. Fungal Divers 29:117–127

    Google Scholar 

  • Rojas C, Stephenson SL (2013) Effect of forest disturbance on myxomycete assemblages in the southwestern Peruvian Amazon. Fungal Divers 59:45–53

    Google Scholar 

  • Rojas C, Stephenson SL, Estrada-Torres A, Valverde R, Morales O (2010a) New records of myxomycetes from high-elevation areas of Mexico and Guatemala. Mycosphere 1:73–82

    Google Scholar 

  • Rojas C, Valverde R, Stephenson SL, Vargas MJ (2010b) Ecological patterns of Costa Rican myxomycetes. Fungal Ecol 3:139–147

    Google Scholar 

  • Rojas C, Stephenson SL, Huxel GR (2011) Macroecology of high-elevation myxomycete assemblages in the northern Neotropics. Mycol Prog 10:423–437

    Google Scholar 

  • Rollins AW, Stephenson SL (2012) Myxomycetes associated with grasslands of the western central United States. Fungal Divers 59:147–158

    Google Scholar 

  • Ronikier A, Ronikier M (2009) How ‘alpine’ are nivicolous myxomycetes? A worldwide assessment of altitudinal distribution. Mycologia 101:1–16

    CAS  PubMed  Google Scholar 

  • Rufino MUL, Cavalcanti LH (2007) Alterations in the lignicolous myxomycete biota over two decades at the Dois Irmãos Ecologic State Reserve, Recife, Pernambuco, Brazil. Fungal Divers 24:159–171

    Google Scholar 

  • Schnittler M (2001a) Ecology of myxomycetes of a winter-cold desert in western Kazakhstan. Mycologia 93:653–669

    Google Scholar 

  • Schnittler M (2001b) Foliicolous liverworts as a microhabitat for Neotropical Myxomycetes. Nova Hedwigia 72:259–270

    Google Scholar 

  • Schnittler M, Novozhilov YK (1996) The myxomycetes of boreal woodlands in Russian northern Karelia: a preliminary report. Karstenia 36:19–40

    Google Scholar 

  • Schnittler M, Novozhilov YK (1998) Late-autumn myxomycetes of the Northern Ammergauer Alps. Nova Hedwigia 66:205–222

    Google Scholar 

  • Schnittler M, Novozhilov YK (2000) Myxomycetes of the winter-cold desert in western Kazakhstan. Mycotaxon 74:267–285

    Google Scholar 

  • Schnittler M, Stephenson SL (2000) Myxomycete biodiversity in four different forest types in Costa Rica. Mycologia 92:626–637

    Google Scholar 

  • Schnittler M, Stephenson SL (2002) Inflorescences of Neotropical herbs as a newly discovered microhabitat for myxomycetes. Mycologia 94:6–20

    PubMed  Google Scholar 

  • Schnittler M, Unterseher M, Tesmer J (2006) Species richness and ecological characterization of myxomycetes and myxomycete-like organisms in the canopy of a temperate deciduous forest. Mycologia 98:223–232

    PubMed  Google Scholar 

  • Schnittler M, Novozhilov YK, Carvajal E, Spiegel FW (2013) Myxomycete diversity in the Tarim basin and eastern Tian-Shan, Xinjiang Prov., China. Fungal Divers 59:1–18

    Google Scholar 

  • Shadwick LL, Spiegel FW, Shadwick JDL, Brown MW, Silberman JD (2009) Eumycetozoa = Amoebozoa?: SSUrDNA phylogeny of protosteloid slime molds and its significance for the amoebozoan supergroup. PLoS ONE 4:e6754

    PubMed Central  PubMed  Google Scholar 

  • Shchepin O, Novozhilov YK, Schnittler M (2014) Nivicolous myxomycetes in agar culture: some results and open problems. Protistology 8:53–61

    Google Scholar 

  • Shearer CA, Crane JL (1986) Illinois fungi XII: fungi and myxomycetes from wood and leaves submerged in southern Illinois swamps. Mycotaxon 25:527–538

    Google Scholar 

  • Singer H, Moreno G, Illana C (2005) A taxonomic review of the nivicolous species of myxomycetes described by Kowalski. I. Order Stemonitales. Mycol Prog 4:3–10

    Google Scholar 

  • Snell KL, Keller HW (2003) Vertical distribution and assemblages of corticolous myxomycetes on five tree species in the Great Smoky Mountains National Park. Mycologia 95:565–576

    PubMed  Google Scholar 

  • Stephenson SL (1989) Distribution and ecology of myxomycetes in temperate forests. II. Patterns of occurrence on bark surface of living trees, leaf litter, and dung. Mycologia 81:608–621

    Google Scholar 

  • Stephenson SL (1993) A comparative biogeographical study of myxomycetes in the mid-Appalachians of eastern North America and two regions of India. J Biogeogr 20:645–657

    Google Scholar 

  • Stephenson SL (2011) From morphological to molecular: studies of myxomycetes since the publication of the Martin and Alexopoulos (1969) monograph. Fungal Divers 50:21–34

    Google Scholar 

  • Stephenson SL, Landolt JC (1998) Dictyostelid cellular slime molds in canopy soils of tropical forests. Biotropica 30:657–661

    Google Scholar 

  • Stephenson SL, Laursen GA (1993) A preliminary report on the distribution and ecology of myxomycetes in Alaskan tundra. Bibl Mycol 150:251–257

    Google Scholar 

  • Stephenson SL, Moreno G (2006) A new species of Didymium (Myxomycetes) from subantarctic Macquarie Island. Mycol Prog 5:255–258

    Google Scholar 

  • Stephenson SL, Shadwick JDL (2009) Nivicolous myxomycetes from alpine areas of south-eastern Australia. Aust J Bot 57:116–122

    Google Scholar 

  • Stephenson SL, Stempen H, Hall I (1994a) Myxomycetes: a handbook of slime molds. Timber Press, Oregon

    Google Scholar 

  • Stephenson SL, Wheeler Q, McHugh J, Fraissinet P (1994b) New North American associations of Coleoptera with Myxomycetes. J Nat Hist 28:921–936

    Google Scholar 

  • Stephenson SL, Novozhilov YK, Schnittler M (2000) Distribution and ecology of myxomycetes in high-latitude regions of the Northern Hemisphere. J Biogeogr 27:741–754

    Google Scholar 

  • Stephenson SL, Clark J, Landolt JC (2004a) Myxomycetes occurring as single genetic strains in forest soils. Syst Geogr Plants 74:287–289

    Google Scholar 

  • Stephenson SL, Schnittler M, Lado C (2004b) Ecological characterization of a tropical myxomycete assemblage-Maquipucuna Cloud Forest Reserve, Ecuador. Mycologia 96:488–497

    PubMed  Google Scholar 

  • Stephenson SL, Schnittler M, Lado C, Estrada-Torres A, Wrigley de Basanta D, Landolt JC, Novozhilov YK, Clark J, Moore DL, Spiegel FW (2004c) Studies of neotropical mycetozoans. Syst Geogr Plants 74:87–108

    Google Scholar 

  • Stephenson SL, Laursen GA, Seppelt RD (2007) Myxomycetes of subantarctic Macquarie Island. Aust J Bot 55:439–449

    Google Scholar 

  • Stephenson SL, Schnittler M, Novozhilov YK (2008) Myxomycete diversity and distribution from the fossil record to the present. Biodivers Conserv 17:285–301

    Google Scholar 

  • Takahashi K (2004) Distribution of myxomycetes on different decay states of deciduous broadleaf and coniferous wood in a natural temperate forest in the Southwest of Japan. Syst Geogr Plants 74:133–142

    Google Scholar 

  • Takahashi K, Hada Y (2009) Distribution of Myxomycetes on coarse woody debris of Pinus densiflora at different decay stages in secondary forests of western Japan. Mycoscience 50:253–260

    Google Scholar 

  • Takahashi K, Hada Y (2010) Geographical distribution of myxomycetes on coniferous deadwood in relation to air temperature in Japan. Mycoscience 51:281–290

    Google Scholar 

  • Takahashi K, Hada Y (2012) Seasonal occurrence and distribution of myxomycetes on different types of leaf litter in a warm temperate forest of western Japan. Mycoscience 53:245–255

    Google Scholar 

  • Takahashi K, Harakon Y (2012) Comparison of wood-inhabiting myxomycetes in subalpine and montane coniferous forests in the Yatsugatake Mountains of central Japan. J Plant Res 125:327–337

    PubMed  Google Scholar 

  • Townsend JH, Aldrich HC, Wilson LD, Mccranie JR (2005) First report of sporangia of a myxomycete (Physarum pusillum) on the body of a living animal, the lizard Corytophanes cristatus. Mycologia 97:346–348

    PubMed  Google Scholar 

  • Tran HTM, Stephenson SL, Hyde KD, Mongkolporn O (2006) Distribution and occurrence of myxomycetes in tropical forests of northern Thailand. Fungal Divers 22:227–242

    Google Scholar 

  • Tran HTM, Stephenson SL, Hyde KD, Mongkolporn O (2008) Distribution and occurrence of myxomycetes on agricultural ground litter and forest floor litter in Thailand. Mycologia 100:181–190

    PubMed  Google Scholar 

  • Ukkola T, Härkönen M, Zeng ZX (2001) Myxomycetes of Hunan Province, China. I. Ann Bot Fenn 38:305–328

    Google Scholar 

  • Wrigley de Basanta D (2000) Acid deposition in Madrid and corticolous myxomycetes. Stapfia 73:113–120

    Google Scholar 

  • Wrigley de Basanta D (2004) The effect of simulated acid rain on corticolous myxomycetes. Syst Geogr Plants 74:175–181

    Google Scholar 

  • Wrigley de Basanta D, Stephenson SL, Lado C, Estrada-Torres A, Nieves-Rivera AM (2008) Lianas as a microhabitat for myxomycetes in tropical forests. Fungal Divers 28:109–125

    Google Scholar 

Download references

Acknowledgments

This study was supported by the National Nature Science Foundation of China (31170014) and funds from the Key Program of Natural Science of Jiangsu Higher Education Institutions of China (12KJA180004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuang-Lin Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, QS., Yan, SZ. & Chen, SL. Species diversity of myxomycetes associated with different terrestrial ecosystems, substrata (microhabitats) and environmental factors. Mycol Progress 14, 27 (2015). https://doi.org/10.1007/s11557-015-1048-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11557-015-1048-9

Keywords

Navigation